UNCLASSIFIED: Dist. A. Approved for public release

Imagery in Cognitive Architecture: Representation and Control at Multiple Levels of
Abstraction

Samuel Wintermute

Abstract

Visual and spatial mental imagery processes seem to play a prominent role in human
cognition, and Al systems have occasionally incorporated imagery-like processes in
order to leverage functional benefits. Typically, these benefits have been characterized
as the ability to perform more efficient inference through the use of specialized
representation. However, as explored in this article, when considering the design of a
cognitive architecture—a specification of fixed mechanisms underlying intelligent
behavior—the functional benefits of imagery go beyond increased inference efficiency.

In a cognitive architecture, as in most Al systems, intelligent behavior is often
contingent upon the use of an appropriate abstract representation of the task. When
designing a general-purpose cognitive architecture, two basic challenges related to
abstraction arise. The perceptual abstraction problem results from the difficulty of
creating a single perception system able to induce appropriate abstract representations
in any task the agent might encounter, and the irreducibility problem arises because
some tasks are resistant to being abstracted at all. Key benefits of imagery relate to
addressing these challenges.

As it is defined here, to support imagery, a concrete (highly detailed) representation of
the spatial state of the problem is maintained as an intermediate between the external
world and an abstract representation. Actions can be simulated (imagined) in terms of
this concrete representation, and the agent can derive abstract information by applying
perceptual processes to the resulting concrete state. Imagery works to mitigate the
perceptual abstraction problem by allowing a given perception system to work in more
tasks, since perception can be dynamically combined with imagery, and works to
mitigate the irreducibility problem by allowing internal simulation of low-level control
processes.

To demonstrate these benefits, an implementation is described, which is an extension of
the Soar cognitive architecture. An agent in this architecture that uses reinforcement
learning and imagery to play an arcade game and an agent that performs sampling-
based motion planning for a car-like vehicle are described. The performance of these
agents is discussed in the context of the underlying imagery theory.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED
19 MAR 2011 Journal Article 19-03-2011 to 19-03-2011
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

IMAGERY IN COGNITIVE ARCHITECTURE: REPRESENTATION | W56h2V-04-2-0001

AND CONTROL AT MULTIPLE LEVELSOF ABSTRACTION
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Samuel Winter mute 5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
Automotive Resear ch Center ,University of Michigan,1231 Beal NUMBER
Ave,Ann Arrbor,M1,48109-2133 , #21799
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'SACRONYM(S)
U.S. Army TARDEC, 6501 E.11 MileRd, Warren, M1, 48397-5000 TARDEC
11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
#21799
12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited
13. SUPPLEMENTARY NOTES
14. ABSTRACT
N/A
15. SUBJECT TERMS
16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF
OF ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE Same as 51
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Introduction

People are confronted with a range of situations in their everyday lives that are
characterized by a need for precise interaction with the spatial aspects of their
surroundings. As a few extreme examples, consider catching a ball, solving a jigsaw
puzzle, or parallel parking. To catch a ball, a person must position their hand in a place
where the ball will arrive; whether or not a given position meets this criterion depends
upon the exact velocity of the ball and the influence of gravity. To solve a puzzle, a
person must find which pieces fit together, which is a property that depends on the
precise details of the shapes of both pieces. And to parallel park a car, the complex
relationship between the controls of the car and its position on the street determines
whether or not a given action sequence will result in successful parking. The broad goal
of this research is the development of a cognitive architecture to support behavior of
this sort. A cognitive architecture is a theory of the fixed processes underlying intelligent
behavior (Langley et al., 2009). Accordingly, hypotheses about architectural structures
supporting intelligence in complex spatially-oriented tasks are necessary.

An important dimension through which these issues can be viewed is that of
abstraction. In complex spatial tasks, as in most tasks, an agent can benefit from using
an abstract internal representation of the structure of the task. Abstraction removes
unnecessary detail, and is a key means by which learning and knowledge representation
can be made tractable. However, the need for abstraction seems to conflict with the
need to account for the rich detail of the spatial world, as is necessary for intelligence in
tasks where those details matter. Since abstraction is a process supported by the
perception and action systems of a cognitive architecture, it is a critical issue to consider
when designing an architecture.

The basic conflict between abstraction and precision is analyzed in this article. As will be
explained in the next section, there are two problems inherent in designing a general-
purpose cognitive architecture capable of abstract representation while still maintaining
the spatial precision necessary for intelligent behavior. First, the diversity of tasks an
intelligent agent must address is large, and it is difficult to create a single perception
system to create appropriate abstract representations in all such tasks. This difficulty is
the perceptual abstraction problem. Second, some tasks are resistant to being
abstracted at all, as is the case when the appropriate action outputs vary continuously
as a precise function of the details of the environment: this is the irreducibility problem.

Aspects of these challenges have manifested (and have been addressed) in research in
several subfields of Al, including robotic motion planning, qualitative reasoning, and
reinforcement learning. However, the root perceptual abstraction and irreducibility
problems have not previously been identified and studied in a general manner outside
of particular task domains. The development of a task-independent cognitive
architecture presents a context where this more basic analysis is necessary.

In this article, the perceptual abstraction and irreducibility problems are introduced, and
a theory of basic architectural mechanisms that can work to mitigate these problems is

presented. The crucial aspects of the theory include the use of both abstract and
concrete (highly detailed) representations of the state of world, continuous action
controllers which access the concrete representation, and imagery capability, where the
concrete representation is internally manipulated, with the results feeding back to the
abstract representation. The theory has been implemented by augmenting the Soar
cognitive architecture (Laird, 2008; Newell, 1990) with memories and processes for
handling spatial information. Agents instantiated in the implemented architecture
presented here provide demonstrations of both the operation of the architecture itself
and the benefits of the underlying theory.

An inspiration for the theory has been psychological research in mental imagery. This
research has provided strong evidence that people maintain and manipulate visual and
spatial information at a level close to that of perception, reusing the same systems that
process perceptual data to process internally generated (imaginary) data (Kosslyn et al.,
2006). This work in this article builds on existing work on computational imagery
systems, particularly that of Lathrop (2008), who created a pilot implementation of a
mental imagery extension for Soar, but also drawing on other theories and systems
(e.g., Barsalou, 1999; Glasgow & Papadias, 1992; Grush, 2004; Huffman & Laird, 1992;
Kurup & Chandrasekaran, 2006; Ullman, 1984).

Imagery capability for visual and/or spatial information has been proposed as an
important cognitive architectural component (e.g., Chandrasekaran, 2006; Lathrop,
2008). Much of the motivation for this inclusion has been drawn from psychological
research. Arguments about the utility of imagery outside of psychological concerns—
functional arguments for imagery—have also been made (e.g., Lathrop et al., 2010).
Typically these arguments are based on research examining benefits in terms of
increased inference efficiency afforded by imagery-like processing (Glasgow & Papadias,
1992; Huffman & Laird, 1992; Larkin & Simon, 1987), or through demonstrations of
particular domains where imagery use is beneficial, such as planning to coordinate a
team of military scout robots (Lathrop & Laird, 2009). The use of imagery presented
here, as a means of mitigating the perceptual abstraction and irreducibility problems,
shows different functional benefits of imagery beyond inference efficiency. In that way,
this work can contribute towards a more thorough understanding of the role of imagery
in cognitive architecture.

To elaborate on this, prior functionality-based examinations of imagery have assumed
that, since abstract propositional representations and concrete perceptual
representations can in principle encode the same information (Anderson, 1978), the
primary functional role for imagery is to allow more efficient inference. However, the
analysis here reveals that, due to the difficulty of solving the perceptual abstraction
problem, in a general-purpose architecture, these representations will likely not be
informationally equivalent. Particularly, the abstract representation alone cannot
capture all relevant details of the problem, while these details can be represented at the
concrete level. A functional role for imagery is then to compensate for this informational
inequivalence. Furthermore, the irreducibility problem creates in an additional role for

imagery processing, as imagery allows low-level control processes to be internally
simulated. This important connection with action control is missing in prior functional
analyses of imagery.

These concepts lead to a difference in the broad way perceptual-level representation
and imagery are understood in the context of a cognitive system. Rather than viewing
imagery primarily as a more efficient means for addressing particular tasks, like solving
geometry problems, or as a means to model human imagination, here, it is an integral
part of the basic process of capturing the right details of the state of the outside world
and the way that that state interacts with the agent’s low-level control processes

That is, the use of imagery in a particular task emerges from the need to construct
appropriate abstract properties for that task given the architectural means available,
not due to the task being “about” imagery. The same basic architectural mechanisms
that allow this might also allow an agent to perform mental rotation, solve geometry
problems, recall memories or construct imaginary scenes, but the tasks examined here
are more basic, involving the immediate interaction between the agent and its
environment.

In order to make traction in this analysis, for the tasks studied in this article it is
assumed that a concrete representation encoding spatial properties is available.
General-purpose perception in Al and robotics is an unsolved problem, so in this work
the tasks studied will use either simulated environments or limited environments where
perception is possible. Nevertheless, as will be demonstrated, interesting tasks can still
be addressed, and progress can be made towards the overall goal of a general-purpose
cognitive architecture for spatial tasks.

Section 1 -Motivation

1.1 Basic Assumptions

The goal of this work is to explore basic issues in architecture design. The space of all
theories upon which an architecture might be based is huge, and not all possibilities can
be addressed here. Therefore, here, discrete decision-making is assumed. That is, we
assume an agent’s reasoning process is a series of steps where potential action choices
are weighed, and one action is chosen. In addition, we assume that this decision-making
is contingent upon symbolic information. For this work, the relevant property of this
information is that, from the perspective of the decision procedure, symbols are
discrete entities that have no intrinsic similarity to one another. Essentially, this means
that properties influencing the decision (for example, learned values of actions) cannot
be a continuous function of the agent’s internal state.

As will be explained in detail shortly, there are two basic implications of this assumption:
an agent needs to derive symbolic information that distinguishes between situations
where one decision should be made versus another (so the correct decisions can be

made), and this symbolic information should distinguish between as few situations as
possible (so minimal knowledge is required to make decisions).

These assumptions are fulfilled by decision-making in Soar and other symbolic cognitive
architectures, along with table-based reinforcement learning systems (Sutton & Barto,
1998) and symbolic planning systems. They do not cover reinforcement learning with
continuous function approximation, nor systems where the agent’s entire behavior is
described by a continuous function from input to output and there is no discrete
decision among actions (e.g., a feedback rule or neural network).

However, these assumptions do not mean that actions must be a function of symbolic
perceptions alone. Previous perceptions and arbitrary background knowledge can be
stored and influence decisions. In addition, non-symbolic processes can operate over
symbolic information and effect decisions. For example, reinforcement learning
adjusting control biases, memory activation influencing knowledge retrieval (Anderson
et al., 2004), or Bayesian reasoning to infer properties from evidence (Tenenbaum et al.,
2006) can all fit in this framework. In addition, the assumption that discrete decision-
making is present is not intended to mean that every aspect of the agent’s external
behavior—every detail of its motor output—must be the direct result of a decision.
Hierarchical control is necessary in many spatial problems, and symbolic decision-
making at the upper level(s) of the hierarchy is sufficient to meet these assumptions,
while other methods such as feedback control can be used at lower levels. Despite
additional complexity in these cases, the two basic implications remain: symbolic
information must distinguish between situations where decisions must differ, but as few
situations as possible should be distinguished.

1.2 Motivating Tasks
To better understand what is necessary to represent and solve spatial tasks, three
example tasks are introduced in this section.

on(A, table)

B on(B, A)
on(C, table)

C D on(D, table)

Figure 1: A simple blocks world task.
1.2.1 The Blocks World
In the blocks world (Figure 1), an agent is presented with some blocks on a table, and
has a simple task of stacking them in some specific configuration, such as block A on
block B on block C.

A straightforward way of addressing this task in a symbolic agent is to use a planning
language such as that used in the STRIPS system (Fikes & Nilsson, 1971). The state is
described in terms of abstract predicates’, as shown on the right of the figure, and rules
encode the consequences of actions in terms of those predicates. In the simplest case,
the initial state and the goal of the problem are expressed in similar terms, and the
problem space can be searched using a standard algorithm (e.g., iterative deepening),
finding a sequence of actions that lead to the goal.

An alternative approach is to use a reinforcement learning algorithm to gradually learn a
policy through interaction with the environment (Sutton & Barto, 1998). In this
approach, the state could again be represented in terms of abstract predicates?, but the
goal is instead mapped onto a reward signal. With enough trials, the agent can learn a
policy to maximize its reward, effectively solving the problem.

In the blocks world, for both of these agents, the on predicates (as shown in the figure)
capture the right aspects of the task such that an optimal plan or policy can easily be
found by an appropriate planner or learning algorithm.

One of these agents might exist in a world where it is repeatedly presented with
problems, and must solve each one. In realistic environments, any given instance of the
task might vary in its details: the blocks might be in slightly different positions, they
might be different colors, or be slightly larger or smaller. However, the representation
used here is good enough that it covers all of these variations of the task. This is the
benefit of using an abstract description of the world: if an abstraction correctly
summarizes the important properties of the task, details can be ignored so that many
underlying problem instances are mapped to a single internal task representation. Any

! Throughout this work, predicate representations will be used as notational shorthand for generic
symbolic representations. The use of predicates is merely to illustrate what data is encoded in terms of
symbols, it does not imply that logical inference is used.

% In line with the symbolic decision-making assumption, when discussing reinforcement learning here, |
am referring to table-based RL, and not RL with function approximation. Connections between the issues
discussed here and RL function approximation will be discussed in Section 5.4.

Initial State Optimal Solution m

State ’T‘
lmmm HHQWQH 1B3H

Figure 2: A pedestal blocks world problem and its optimal solution state.

instance of the task where the initial state encodes that all blocks are on the table can
be solved with the same action sequence, regardless of the exact location of the blocks
on the table, their size, color, etc.

In opposition to these abstract agents, consider an agent using a more detailed
representation, such as continuous coordinates describing the shapes of blocks, without
a higher-level interpretation (we will call this sort of detailed representation concrete). If
these coordinates are treated symbolically, any variation in the blocks, however minor,
will cause the agent to perceive a completely different state. An agent using such a
representation has very little generalization ability: it is extremely unlikely that two
blocks in different problem instances would ever appear in the same precise position, so
a reinforcement learning agent would need to learn a unique policy for each instance,
and a planning agent would need unique rules for each instance.

In short, an agent with the ability to induce on predicates is able capture all of the right
details of the blocks world to make correct decisions, and is able to do so while
minimizing the number of distinctions made. This representation forms the ideal case
for symbolic decision-making, as it is both compact and accurate.

1.2.2 The Pedestal Blocks World

To illustrate a situation where symbolic representation is not so simple, consider a
slightly modified version of the environment (Figure 2). Here, the agent is presented
with a table and three blocks. There are some pedestals fixed to the table upon which
the blocks can be placed. The goal is to place the blocks on the pedestals in the correct
order (A to the left, then B, then C to the right). The agent first moves block A to some
pedestal, then B then C.

Rather than having a single goal, this agent receives a numerical reward proportional to
the quality of its solution. A reward of 100 is received for placing the blocks in the
correct order. It is better to place the blocks as far to the left as possible: 10 points are
deducted from the reward for each empty platform to the left of C. However, the blocks
can only be placed centered on the pedestals (otherwise they fall off), and the pedestals
may be positioned such that a certain block cannot be placed on a certain pedestal, as a
neighboring pedestal is in the way, or that two blocks cannot fit on adjacent pedestals. If
the agent places a block where it cannot fit, it receives a reward of -100 and the task
ends. If the agent places the blocks on the pedestals without a collision, but the ordering
is wrong, a -10 reward is received.

This task is not as straightforward for a symbolic agent to address, as it is not as clear
how to represent the state of the task in terms of abstract symbols. If symbols simply

describe the same basic aspects of the state as were necessary in the unmodified blocks
world (on predicates), these symbols are insufficient to distinguish between cases
where the best action is, for example, moving A to pedestall, from cases where the
best action is to instead move A to pedestal2. This is because the crucial aspect of the
problem that affects which choice is better is not captured by the given symbols:
whether or not the given action would cause a collision.

Instead, more complex predicates are needed. A predicate encoding exactly the relevant
property would suffice: for example collision_if_moved(A,pedestall) might be
true if moving block A to pedestall would cause a collision. However, note that this
encodes a complex, task-specific relationship. For example, Figure 3 shows a situation
where, to infer collision_if_moved(C,pedestal2), the exact sizes and positions
of three blocks and three pedestals need to be accounted for, and one of those blocks
(C) is located spatially far from the other objects. While one might propose that a
generic perception system could provide on information for objects it sees, supporting
blocks world tasks, the symbolic information necessary in this task is not such a simple,
local, task-independent property of the environment. This raises the issue, then, of how
a generic architecture could support solving pedestal blocks world problems.

1.2.3 Motion Planning for a Nonholonomic Car
In some cases, creating symbolic representations is even more difficult, due to the need
for precise control.

Even in the blocks world, if a real robot is used, precise control is necessary. In a real
robot, the final output of the agent is a set of motor voltages. Since real blocks can vary
in size and shape, the actual outputs might need to be sensitive to those variations. If
the motor voltages are continuous, as are the positions of the blocks, the problem likely
cannot be solved by symbolically mapping abstract symbolic perceptions to actions.

However, in simple domains like the blocks world, this aspect can be ignored: low-level
controllers that continuously transform the details of the perceived state to output
voltages can be incorporated in the system. This is a partially nonsymbolic approach to
the problem, but fits within a system using symbolic representations for decision-
making: controllers can be encapsulated in modules isolated from the rest of cognition,
and the actions of the agent can simply be viewed as selecting between controllers (e.g.,
Laird et al., 1991).

A

1 1@3@@

Figure 3: A situation in pedestal blocks world where nonlocal interactions are important if the
agent is considering moving block C to pedestal 2.

For this encapsulated controller approach
to work, though, to make intelligent Start@
decisions, the controllers must have
symbolic characterizations: the behavior
of the controllers must result in consistent
transitions between symbolic states. This A
essentially means that the controllers

must have performance guarantees. In the

blocks world, if a robotic gripper is D
controlled to move physical blocks, the
previously described approaches to the
problem will work well if the gripper
controller can reliably transition between states described by on predicates.

goal

Figure 4: A nonholonomic car motion
planning problem.

However, again, some tasks are not as straightforward. Motion planning, as it will be
considered here, is the problem of determining a sequence of control outputs that
causes a robot to move through space to reach a goal position. In Figure 4, the task is to
drive the car object to the goal region while avoiding the grey obstacles. A line outlining
the optimal path to follow is shown. Some approaches to motion planning use
encapsulated controllers, where the controllers are designed such that the problem can
be reduced to a search through the symbolic states those controllers reliably traverse
(e.g., Beeson et al., 2010). This works well for particular classes of robots, such as
polygonal robots that can move in any direction, and for more complicated robots when
tight maneuvering is less important.

However, in other situations, the encapsulated controller approach does not work. One
reason for this difficulty is that certain kinds of constraints on motion are infeasible to
capture in abstract representations, and creating an abstract representation is
necessary for the encapsulated controller approach to work well. Nonholonomic
constraints result from systems where the number of controllable dimensions is less
than the total number of degrees of freedom. A car is nonholonomic, since its position
can be described by three parameters (its position on the surface of the earth and the
direction it is facing), but it is only controllable in two dimensions (driving forward and
reverse, and steering left and right). The figure shows an example problem where the
nonholonomic constraints matter. It is difficult to come up with an abstraction of the
problem where the path shown could have been composed by searching through an
abstract state space.

This situation, where precise control cannot be reduced to transitions between symbolic
states, presents another challenge to symbolic agents, which will be addressed shortly.

1.3 Meta-Problems in Architecture Design

These domains provide insight into some fundamental issues in cognitive architecture
design. These issues will be presented as meta-problems: problems that the design of
the architecture must support solving as a prerequisite for solving external problems.

First, in order behave intelligently in any task, the agent needs to use its perception
system to infer information about the outside world. This leads to the first meta-
problem:

Veridical Perception Problem: An agent must have the means to determine sufficient
information about the true state of the world in order to intelligently select actions.

This problem is posed mainly to clarify what this research is not about. Much research in
Al and related fields is working towards addressing veridical perception, including
research in robotic perception and computer vision. However, the focus here is instead
on problems that arise even when the complete state of the world is known to the
agent, such as it is in virtual environments. The previous section described difficulties
related to perception in both the pedestal blocks world and nonholonomic motion
planning tasks, however, these difficulties had nothing to do with inferring the true
state of the world: they had to do with representing that information in a form such that
actions can be chosen.

Another meta-problem is then present, related to the need for an agent to construct
appropriate abstract symbols to choose actions. Any agent that performs symbolic
decision-making needs to derive symbols from its perceptual input that it can use to
distinguish between situations where one decision should be made versus another. If
two situations cannot be distinguished in terms of the available symbolic information,
the agent will make the same decision in both. In addition, these symbols should
distinguish as few states as possible—they should be abstract. If, instead of using on
predicates, a blocks world agent encoded every detail of the problem in its symbolic
representation (a concrete representation), planning or learning would be infeasible.

Any agent architecture following the symbolic assumption must then solve a problem of
perceptual abstraction:

Perceptual Abstraction Problem: An agent must have the means to create abstract
symbolic structures from perceptual input that can serve as the basis for intelligent
action choices.

The discussion of control in the previous section motivates another meta-problem. If all
behavior is viewed as mapping primitive perceptions to symbolic information, and
selecting primitive actions based on that symbolic information, there may be no possible
symbolic representation of the problem that makes all of the necessary distinctions
between situations and yet is abstract enough that efficient planning or general learning
is possible.

Irreducibility problem: An agent must have the means to intelligently act in tasks where
abstract, purely-symbolic representation is not possible.

The word “irreducibility” here makes the most sense when the task is viewed as an MDP
(as will be elaborated in Section 3). The size of an MDP may be “reduced” by identifying

on(A, pedestal1)
A ny on(B, table)

H H H on(B', pedestal2)
B C on(C, table)
1l 12 3 [4 15|16 1 collide(A,B")
Figure 5: Imagery in pedestal blocks world.
The agent has imagined block b on pedestal2 (creating an imagined copy, B’) and inferred
the abstract predicates at right.
equivalent states and/or actions and combining them (Givan et al., 2003). However, at
some point the MDP will reach a minimal size. If the minimal MDP is still very large, we

call the problem irreducible. In general, though, the problem can occur in the context of
any symbolic representation scheme, not just MDPs.

In many cases, the irreducibility problem can be handled by including encapsulated
controllers in the architecture, as can be done in the blocks world. In that case, at the
symbolic level, the actions are to choose among controllers rather than to issue raw
motor commands. However, in other tasks, such as motion planning for a nonholonomic
vehicle, this transformation may not be possible, as there is no apparent way to
effectively divide the problem between low-level controllers and symbolic reasoning to
choose between controllers.

An important aspect that affects the difficulty of solving these meta-problems is the
number of tasks the agent is to address. Solving the problems and creating an
architecture capable of supporting intelligent behavior in a single task is much simpler
than doing the same for a general-purpose architecture. Accordingly, the general
veridical perception, perceptual abstraction, and irreducibility problems are defined to
be the versions of these problems that must be addressed by an architecture capable of
supporting intelligent behavior in the same breadth of tasks as humans.

1.4 Imagery for Spatial Tasks

In this article, cognitive architecture structures are introduced which address the
general perceptual abstraction and general irreducibility problems. These structures
support simulative imagery. In this section, simulative imagery is explained at a high
level, details will be covered in later sections.

In the pedestal blocks world, an issue with symbolic representation was that some
important information—the circumstances under which a given action will cause a
collision or not—is difficult to capture in terms of symbols. A predicate to capture this
information was proposed (collision_if moved), however, calculating this
predicate involves many factors, and it is not obvious how a task-independent agent
could infer it. That is, it is one of the cases that make general perceptual abstraction
difficult.

The proposed solution to the difficulty of perceptual abstraction in cases like these is to
use imagery. An imagery agent has both an internal abstract problem representation,
along with a more precise internal concrete representation: a representation that

10

makes as many distinctions as possible between states of the world. That is, it has
internal representations akin to both pictures and predicates. The agent can simulate its
actions in terms of the concrete representation, and derive the resulting abstract state.
In the pedestal blocks world, the agent can imagine what would happen if it were to
move a given block on to a given pedestal, and detect whether a collision would result
(Figure 5). Essentially, imagery here allows a complex, task-specific predicate to be
inferred by using a combination of simple, task-independent mechanisms.

In nonholonomic motion planning, the selection of complex control sequences cannot
easily be reduced to a search through abstract symbolic states. That is, the problem is
irreducible, and this irreducibility cannot be handled by encapsulated controllers. In
response to this difficulty, a common approach is sampling-based motion planning
(Lindemann & LaValle, 2003). These techniques determine the reachable locations for a
robot by simulating motion from its current position. This simulation process can be
considered a form of imagery. Sampling-based motion planning is often used in
conjunction with low-level controllers. For a car planning problem, a controller can be
created to steer the car toward a point in space, and the algorithm samples possible
inputs to this controller (intermediate goal points, or waypoints) through simulation to
find a sequence that results in a short, collision-free path reaching the goal. The relevant
aspect of this is that imagery operations simulating the behavior of the agent’s low-level
controllers is an essential part of the technique. In many cases, the actual controllers
used for external action can be run with simulated inputs to allow this (e.g., Leonard et
al., 2008).

In using imagery, the problem is divided between a high-level search over possible
sequences of waypoints, and low-level simulations over concrete states that determine
which further waypoints are reachable from a known state. This differs from the
encapsulated controller approach: while the technique still has aspects of a search
through abstract states, the problem is not reduced to such a search. Abstract states
encoding information like “reached waypoint 12” or “collided with an obstacle” are
used, but the agent has no way of knowing what future abstract state transitions will
happen without using simulative imagery. Put another way, the agent can use low-level
controllers whose behavior cannot be reliably characterized with simple abstract state
transitions. Through the use of simulative imagery, though, the irreducibility problem is
mitigated in these agents. A complete motion planning agent will be discussed in
Section 4.

Section 2 - Architecture for Spatial Problems

The examples in the previous section informally present some benefits of imagery
processing. Here, a theory for an architecture incorporating these aspects is described,
specific functional benefits afforded by the theory are presented, and a computational
instantiation of the theory is described.

2.1 Theory Description

11

Many types of Al systems fit the basic pattern that perceptions are mapped to an
abstract problem state, and abstract decision-making occurs in terms of that problem
state. This is shown in Figure 6(a). In the figure, the decision system could be a symbolic
planner or a reinforcement learning system, or something less constrained such as
Soar’s symbolic processing.

Figure 6(a) labels the different parts of this generic architecture. Call the direct output of
the agent’s sensors P,, for raw perception. This signal is transformed by the perception
system to create an abstract perception signal, called P,. The system maintains an
internal abstract representation of the problem state, R, calculated as a function P,,
possibly taking into account past observations and background knowledge. Agents of
this sort typically use a high-level representation of actions: it is rare that actions are
considered in terms like “set motor voltage to .236"”, even though that may be the final
output of an embodied agent. So, even in a simple system, there are typically distinct
abstract and raw action signals, A, and A,, and a motor system that creates A, from A,.

An architecture with imagery is shown in Figure 6(b). A concrete representation, R, is
present, in addition to R, (in the decision system). An additional level of perceptual and
action processing has also been added. The output of low-level perception is now
provided to R, so it is called P, for concrete perception. R, is chiefly derived from this
signal. However, R is not strictly an interpretation of P, but can also be manipulated. In
particular, it can be manipulated via imagery based on the high-level action signal A,
from the abstract decision system. High-level perception processes transform R into P,
which is the perception signal provided to the abstract decision system. Note that this
happens independently of whether the contents of R, are real or imagined: the form of
P, is the same, just possibly annotated as real or imagined.

Imagery actions share common mechanisms with external actions. Agents can thus
simulate the results of external actions in the imagery system. Moreover, the system

(a) (b)| Agent
[Decision)
Agent
(.) Pa Aa
ElDeasmn |
magery
A High-Level] (High-Level
Pa Aa [Perception] {Action
Eﬁerceptiorﬂ(Action) @
A
P A
r] Pc Ac
Low-level ||Low-level
Environment Perception)| Action
PrA Ar

| Environment |

Figure 6: A basic non-imagery architecture (left) and an imagery architecture

12

can now use actions that cause changes to the imagery system, but do not have a
corresponding external action. These imagery actions can be used for many different
things, for example, detailed memories could be retrieved, or geometric reasoning could
be performed. For this discussion, though, we will focus on simulative imagery: using
imagery actions to predict the value of P, a given action would cause if it were to be
executed in the environment. Through simulative imagery, the abstract decision system
can get information about the state of the world not just via P, directly, but via
predictions about future values of P,. Both these predictions and the execution of the
external actions themselves can be based upon information not present in the current
value of P, itself, but present in P..

2.2 Benefits of the Theory

This architectural theory provides several benefits. Here, we will focus on three of the
most important, while a larger set is explored elsewhere (Wintermute, 2010a).

The theory allows movement and nonlocal interaction to be captured in terms of
abstract symbolic information, mitigating the perceptual abstraction problem.

In order to choose an action, an agent may need to take into account the precise
movement of objects. For example, when parking in a parking garage, one needs to
consider whether the car will collide with a pillar when turning into a tight spot.
Similarly, it can be necessary to take into account object interactions that, from the
perspective of the current state, are non-local. The pedestal blocks world again provides
an example of this: when considering moving a block from the bin to a pedestal, it must
be determined whether a collision will occur in the future. In the current state (when
the block is in the bin), this determination involves both properties of the moving block
and properties of objects that are spatially distant from it.

To represent these problems at an abstract level, the perception system must
distinguish between the relevant states. Even if the agent has a perception system
specifically built for the task, though, this is a difficult perceptual abstraction problem.
The distinctions cannot be easily detected by composing simple “features” of the
current visual scene detected in a bottom-up manner.

However, if actions can be simulated based on concrete information, properties that
were difficult to compute in the original state might be simpler to compute in the
simulated state. In the pedestal blocks world example, once the block is imagined in its
new position, the agent need only infer a basic property: whether or not the imagined
block collides with any other object.

The theory allows task-specific abstract properties to be encoded by a fixed, task-
independent high-level perception system, mitigating the general perceptual
abstraction problem.

13

This benefit addresses the general perceptual abstraction problem. How can a task-
independent agent construct abstract perceptual properties in arbitrary tasks? This is a
hard problem, since deriving abstract properties from concrete information is a difficult
process. The simplest approach would be to come up with a set of universal abstract
properties, which are calculated by architectural means.

However, for spatial problems, this approach does not seem viable. Researchers in
qualitative spatial reasoning have attempted to describe such a set of universal
properties, but no set has been found. This has led to the poverty conjecture of Forbus
et al. (1991):

"We claim there is no purely qualitative, general-purpose, representation of
spatial properties. That is, while qualitative descriptions are useful in spatial
reasoning, they are not sufficient to describe a situation in a task-independent
and problem-independent fashion."

Task-independent qualitative properties are precisely the sort of abstract symbolic
representation of perceptual information that allow an agent to compactly represent
the state of a problem while retaining enough information to choose appropriate
actions. Assuming the poverty conjecture is true, something more is needed to solve the
general perceptual abstraction problem.

For solving qualitative reasoning problems, Forbus et al. propose augmenting qualitative
information with a quantitative representation, which is similar to the approach taken
here. If imagery is present, the overall process of perceptual abstraction can involve
both imagery and high-level perception. From an architectural point of view, the same
high-level perceptual processes allow different symbolic information to be encoded
depending on what imagery operations were performed. Not only can more relevant
properties in particular tasks be generated (as the previous benefit covered), but if the
imagery processes simulate actions particular to the task, the architecture is able to
encode task-specific properties while retaining a task-independent high-level perception
system.

As in the pegged blocks world example, in this work we focus on using simulative
imagery to generate these task-specific properties. In that example, the fact that a
collision results from a particular action is a (task-specific) property of the current state.
Non-simulative imagery could be used for the same purpose, though. For example, an
agent could use geometric imagery operations such as creating a line between two
objects to determine if a third object is between them.

The theory allows symbolic reasoning over continuous processes, eliminating the need
for symbolic characterization of controller performance, mitigating the irreducibility
problem.

As the action system has access to the concrete representation, low-level controllers
can be used which have access to the detailed state information therein. While

14

irreducibility in some problems can be handled entirely by encapsulating appropriate
behaviors in low-level controllers, this is not always the case. As with the motion
planning example in the last chapter, sometimes controllers cannot be built such that
the problem can be reduced to an abstract state space. However, beyond simply
supporting low-level controllers, in the theory here, abstract symbolic processing in the
agent can reason over controllers without having a characterization of their behavior in
terms of abstract states. If the performance of a controller can be simulated with
imagery, the agent can derive the abstract outcome of a proposed action in the
particular situation, even though that outcome might depend on details of the situation
that the agent cannot capture in terms of abstract symbols.

This allows for much less constraint on the kinds of controllers that can be used in the
system. Performance is then improved in tasks like nonholonomic motion planning,
where the problem cannot be otherwise addressed without some loss of solution
quality.

2.3 The Soar/SVS architecture

In this section, the design and capabilities of the Spatial/Visual System, or SVS, is
presented. Together with the existing Soar architecture (Laird, 2008), Soar/SVS
constitutes an implementation of the theory presented in the previous section. The SVS
system has been under development for several years, and a comprehensive overview
of the architectural design has been published elsewhere (Lathrop et al., 2011)>.

3 Lathrop et al. also discussed the theoretical motivation for the architecture, as is the focus here. While
some of the issues presented in this article were encountered there, that discussion was brief and
example-based, while this work provides a substantial elaboration and a grounding in general principles.

15

The overall design of Soar/SVS as it pertains to this work is shown in Figure 7. This
diagram is decomposed in a similar way to Figure 6(b), in terms of a decision and
imagery system, and the connections between them. Soar is the decision system in this
case. Agents in Soar can be instantiated to use many different techniques to make
decisions, including planning and reinforcement learning. Soar contains a symbolic
working memory, through which different processes in memories in Soar communicate.
This is where SVS connects to the existing Soar system, high-level perception (via P;)
adds elements to a special area of working memory, and high-level actions (issued via
A,) are similarly formulated in a special area of working memory. The P, and A, signals
have many meaningful components as shown in the diagram; these different
components will be explained shortly.

As an imagery system, SVS sits between symbolic processing in Soar and the outside
world. A complete embodied agent also requires lower-level perception and action
systems to handle the actual output of sensors and input to effectors. These systems are
the source of the P. signals and receiver of the A signals, respectively.

SVS contains a spatial short-term memory, the spatial scene, which serves as the
concrete representation in this work. The spatial scene encodes a set of labeled
polyhedrons in two- or three-dimensional space. Additionally, the system has a visual
short-term memory, encoding 2D pixel-array information. The visual system is not
shown in the diagram, but is discussed elsewhere (Lathrop et al., 2011). It is an alternate

Figure 7: SVS system design. Boxes are memories, circles are processes.

16

manifestation of a concrete representation with different processing characteristics
than the spatial representation, however these differences are not relevant here. A
long-term memory is also present in SVS for visual, spatial, and motion data, called
perceptual LTM.

Theoretically, the perceptions provided to SVS (P.) should be raw pixels from a camera,
or something analogous to the lowest cohesive representation in the human visual
system. As we do not address the veridical perception problem, the system does not
attempt this. Rather, a task-specific low-level perception system must directly provide
the spatial state of the world spatial via P..

From the point of view of the decision system, the only aspects of the underlying spatial
state available are what are encoded in P,. Here, that includes the perceptual pointers,
along with information available through predicate extraction processes. A perceptual
pointer is a unique token that refers to a specific underlying visual or spatial structure
(e.g., an object in the spatial scene). SVS always presents a set of perceptual pointers in
P., and if a pointer appears in A,, SVS can dereference it to access the corresponding
perceptual structure.

Predicate extraction processes derive qualitative symbolic information from the
underlying quantitative state. For example, the agent can detect whether or not two
objects intersect. Note that these processes do not involve access to knowledge: there is
a fixed, architectural library of predicates that the system can extract. Along perceptual
pointers, predicate extraction processes instantiate the high-level perception system in
Figure 6. The spatial details of the objects in the world (their coordinates in 3D space)
are not provided in P,.

Since the information available to the symbolic system is limited to object identities and
simple qualitative properties, for complex reasoning tasks, imagery must be used.
Images, once created in the spatial scene or visual buffer, are thereafter treated
identically to structures in those memories built by perception. To perform imagery, the
system needs mechanisms through which spatial images can be created and
manipulated. In SVS, there are three such mechanisms. These mechanisms include
memory retrieval, which instantiates objects from long-term memory into the spatial
scene, and predicate projection, which creates spatial objects based on qualitative
descriptions created by Soar (such as “a line between A and B”) (Wintermute & Laird,
2007).

Another important imagery type is a motion simulation (Wintermute & Laird, 2008). A
motion simulation process transforms the position of an object in the scene based on
some method specific to they type of motion in question. The individual motion types
are considered task knowledge, rather than a fixed part of the architecture®. Using this

In the current system, motions are implemented by arbitrary C++ functions. Defining a more uniform
representation and a learning mechanism is an area for future work.

17

system, the architecture can support detailed simulative imagery, even when the
consequences of an action cannot be described in terms of qualitative predicates or
created by retrieving a memory (as the other two mechanisms support).

One aspect of the theory presented in the previous section is that low-level actions
share common mechanisms with imagery, and in SVS this commonality is present in the
motion simulation system. While some motion processes might not be tied to actions,
such as might be used to predict the path of a bouncing ball, other motion processes
can include processes where a motion is simulated with the help of an action controller.

For example, a car motion controller can be used in SVS. When Soar uses the controller,
it provides a perceptual pointer to the car object in the scene, and a pointer to a goal
object. Based on the spatial scene, the controller can determine the body angle and
position of the car. This information can be used to calculate a desired steering angle to
set. To do this, the controller can determine the angle between the front of the car and
the goal object, and steer in that direction, proportional to that difference, saturating at
some maximum steering angle. When used in imagery mode, this angle, along with the
time step, can be fed back in to a set of equations modeling the response of the car to
the steering control, and the position and angle of the imagined car object can be
determined. When used in execution mode, it can instead be output to the low-level
action system. Even in execution mode, it may be useful to simulate the motion in
parallel with execution, as this simulation can be used as part of a Kalman filter to assist
in the control process (Grush, 2004). While this car controller is hypothetical, as the
implemented system has not been used in real robots, the imagery aspects of it have
been implemented and used, as will be discussed below.

The imagery components of SVS, along with controllers such as the car controller
discussed above, make up the high-level action system in the SVS instantiation of the
imagery architecture in Figure 6.

Section 3 - Reinforcement Learning Agents in Soar/SVS

To aid in evaluating the imagery theory, implemented agents are necessary. In order to
reduce the factor of hand-programmed knowledge in this evaluation, an integration
between imagery and reinforcement learning in Soar/SVS is described here, so that all
control knowledge is learned as opposed to programmed. The aims of this discussion
are threefold: to provide further explanation of the theory through demonstrations of
implemented agents, to provide evidence of the benefits outlined in Section 2.2, and to
connect this work with concepts and related work in the area of reinforcement learning.

3.1 State Abstraction and Imagery in Reinforcement Learning

Work in reinforcement learning typically models the task being addressed as a Markov
Decision Process (MDP). An MDP consists of a set of states, a set of actions, a function
encoding transition probabilities from one state to another (given an action), and a
function encoding the expected immediate reward for each transition. ?si’ indicates the

probability of transitioning from a state s to another state s’ with action a, and ﬁ?

18

indicates the expected immediate reward for action a in state s. Here, we will assume
that an agent is actively engaged in the problem, and has no initial knowledge of the
transition probabilities or reward distribution. At every time step, the agent observes a
state s;, and selects an action a;. The environment then transitions and provides the
agent with a reward r;,, at the next time step.

Essentially, an MDP describes a large state space, where actions probabilistically cause
an agent to move between states and receive rewards. Each transition in an MDP must
be conditionally independent of previous transitions, given the state the agent is
transitioning from and the action; this is the Markov property. A reinforcement learning
agent learns a policy (a mapping of states to action choices) to maximize its expected
future reward.

The MDP formalism can provide an objective measurement of what it means to have a
good state representation for a task: such a representation makes the transition
probabilities Markovian (they have the Markov property), and allows for policies to be
represented with an expected future reward that is as large as possible, meaning that it
captures all details of the world necessary to select the best action. However, it is also
important that this state representation be compact: learning can quickly become
intractable if the state space is large.

These points can be seen in simple domains like the blocks world, as was touched upon
in Section 1.2. If the agent encodes the complete spatial state of the blocks (their
bounding coordinates in continuous numbers), the representation is Markovian and
allows for optimal policies to be encoded. However, if the agent is solving multiple
instances of blocks world problems where the block dimensions vary between instances,
encoding the complete spatial state results in a situation such that the agent rarely
experiences repeated states. Repeated experience is necessary for learning, so this
agent would perform very poorly.

To make a more compact learning problem, allowing faster learning, state aggregation
can be used. Formal techniques exist for determining equivalent states in an MDP, and
the size of a given MDP can be reduced by checking for these equivalencies and
aggregating equivalent states into abstract states (Ravindran & Barto, 2002; Givan et al.,
2003; Li et al., 2006). Alternatively, it is possible to take an architectural view of the
issue, and define a perception system that implicitly aggregates states together as it
builds an internal abstract representation. In the case of blocks world, the perception
system can build predicates such as on(A,B) that form a state representation that is
Markovian, allows for maximum reward to be achieved, and is minimal.

If state abstraction results from perception in this way, in order to create an agent able
to induce compact MDP representations in arbitrary problems, the general perceptual
abstraction problem must be solved. As was discussed in Section 2, the imagery
architecture proposed here provides benefits that help mitigate the perceptual
abstraction problem. Specifically, the architecture provides mechanisms that allow an

19

agent to encode abstract properties that capture movement and nonlocal interaction,
and to allow task-specific abstract properties to be encoded by a task-independent
perception system.

3.1.1 The Pedestal Blocks World

To provide a concrete example of these benefits in a reinforcement learning setting, the
pedestal blocks world task (Figure 2) outlined in Section 1.2 will be used. Here, the agent
is presented with a table and three blocks. There are five pedestals fixed to the table
upon which the blocks can be placed. The goal is to place the blocks on the pedestals in
the correct order (A to the left, then B, then C to the right). The agent moves each block
to a pedestal, first A then B then C, and then receives some reward.

Recall that a reward of 100 is received for placing the blocks in the correct order, but 10
points are deducted from the reward for each empty platform to the left of C. If the
agent places a block where it cannot fit, it receives a reward of -100 and the task ends. If
the agent places the blocks on the pedestals without a collision, but the ordering is
wrong, a -10 reward is received.

An optimal policy for solving the problem is apparent: place block A on the leftmost
pedestal where it will fit, place B on the leftmost pedestal right of A where it will fit, and
place C similarly. However, an agent solves many instances of this task. In each instance,
the positions and heights of the pedestals, along with the dimensions of the blocks,
differ. Because of this, the actual moves needed to optimally solve the problem differ
from instance to instance. Assume that the agent views the task on a computer screen,
and interacts by pressing buttons to indicate the pedestal where each block should be
placed. The display updates after each block is moved. This problem then has a simple
formalization: given the pixels on the screen, button choices must be output.

3.1.2 Perceptual Abstraction in Pedestal Blocks World

Taken at its basic definition, the problem is an MDP where each set of pixels constitutes
an individual state. Of course, state aggregation would be very valuable here, since
otherwise too many states would be present for learning to be tractable.

A perception system providing a standard blocks world encoding of the state in terms of
abstract predicates like on(A,table) or on(B,pedestall) is inadequate, since
collisions cannot be predicted based on that information, and the best policy would
have a low expected future reward. The nonlocal interaction of the block with the
surrounding objects at its new location is critical to capture in order to induce a correct
state aggregation.

Soar/SVS can use its task-independent high-level perception system to encode the
standard blocks world on predicates by composing them out of the primitive available in
the predicate extraction system (Wintermute, 2009a). Predicate projection in the
system can also be used to imagine the blocks at their new locations, and high-level
perception can be applied to the imagined scene to determine whether actions result in
collisions. These collision predictions are task-specific properties of the current state.

20

30

10
10 imagery-augmented
g state abstraction
[J)
':b -30 == state abstraction
E

-50 =>¢=n0 abstraction

(random)
-70
-90
1 3 5 7 9 11 13 15 17 19

Episode Bin

Figure 8: Results of learning in pedestal blocks world showing advantage of
imagery-augmented state abstraction.

Through these means, the Soar/SVS agent can infer task-specific symbolic information
capturing non-local interaction using its task-independent high-level perception system,
demonstrating two of the three benefits of the theory.

An agent has been built to use this abstract state information with reinforcement
learning in this task. The abstract state consists of on predicates describing the current
scene, along with predicates encoding whether or not each action will result in a
collision (e.g., collision_if_moved(B,pedestal2)). As imagery is used to add
information to the abstract state, this agent will be called an imagery-augmented state
abstraction agent.

State abstraction here is used in conjunction with a table-based Q-learning algorithm to
learn a policy. For each state-action pair that a table-based Q-learning agent encounters,
it learns the expected discounted future reward for taking that action and following the
optimal policy—this is called the Q value of the action. Soar’s existing reinforcement
learning system implements the learning algorithm (Nason & Laird, 2005).

To verify that the overall system works as described, experiments were run to compare
the performance of an agent using imagery-augmented state abstraction versus an
agent that can only encode the on predicates describing the current scene (non-imagery
state abstraction) and an agent that takes random actions, mimicking one that learns in
terms of the raw (unabstracted) pixel states where repeated states would be extremely
rare. Figure 8 shows the results of this experiment. 25 trials were run of 10,000 episodes
each. The sizes of the blocks and positions of the pedestals were randomized for each
episode, each was a spatially-unique instance (both the imagery and non-imagery
conditions used the same instances). Epsilon-greedy exploration was used, with
parameters of @ = 0.3, = 0.1, and y = 0.9. Total reward per episode was collected,

21

bins of 500 adjacent episodes were grouped together, and reward was averaged across
all trials and all episodes in the bin and across all trials

As can be seen in the figure, in this case, learning using task-specific abstract
information derived from imagery results in better performance, both in terms of
learning speed and the quality of the final policy, when compared to similar states
abstracted without using imagery augmentation. Both of these approaches outperform
learning directly in terms of concrete (pixel-based) states. Since imagery allows the
agent to encode useful task-specific abstract properties that capture non-local
interaction, these data provide evidence that the relevant aspects of the architecture
are working to mitigate the perceptual abstraction problem.

3.2 Action Modeling and Imagery in Reinforcement Learning

The previous section demonstrated the use of the architecture in aiding reinforcement
learning by allowing a more compact MDP representation of the problem to be induced.
However, there is room for improvement with this algorithm. The agent uses imagery to
make predictions about the consequences of its actions, however, those predictions are
treated as properties of the current state, and not as properties of the actions the agent
is choosing between. For example, if the agent infers
collision_if_moved(B,pedestal2), it does not differentiate that this information
is relevant to the action of moving B to pedestal2, and not as relevant for the other
actions under consideration. The action modeling knowledge implicit in these
predictions is not leveraged.

While simulative imagery is performing action modeling, standard techniques for
integrating action modeling and RL (model-based RL techniques) are not appropriate
here. This is because the result of a prediction, from the perspective of the decision
system, is non-deterministic. There is not enough information in the abstract state to
reliably predict what the outcome of an action will be, even though that information
may be present in the concrete state of the imagery system. This is a problem for
model-based RL techniques applied to the abstract state space, which typically rely
dynamic programming: the assumption that predictions made for a given state remain
applicable when that state is later encountered is false.

Based on these insights, a new technique for integrating reinforcement learning with
imagery was developed, RelLAl (Reinforcement Learning with Abstraction and Imagery;
Wintermute, 2010b). In a ReLAl agent, the value of an action is determined solely by the
next abstract state predicted to result from that action. Technically speaking, RelAl
involves an aggregation of state-action pairs, rather than an aggregation of states. That
is, individual entries in the table of values learned by Q-learning are aggregated, rather
than states of the MDP. The aggregate that a state-action pair belongs to is determined
by the predicted next abstract state that will result from it. The aggregate of a state-
action pair is called a category, and indicated by C(s,a). The abstract state
corresponding to concrete state s is indicated by A(s). When RelAl predicts correctly,
then, C(s,a) = A(s").

22

To prevent confusion, the standard state abstraction approach used above, where Q-
learning occurs as normal but within an abstract state space, will be called direct state
abstraction. Direct state abstraction agents may or may not use imagery augmentation
to construct the state. State abstraction is used within RelAl agents, but interacts
differently with the learning algorithm.

To see the difference between imagery-augmented direct state abstraction and RelAl,
consider the following circumstance: block A is on pedestall, and blocks B and C are
on the table, so B will be moved next. The agent predicts that moving B to pedestal2,
pedestal3, or pedestal6 will not cause a collision, but moving to pedestal4 or
pedestal5 will. The best action here is to move B to pedestal2. To find the learned
value of that action, the imagery-augmented direct state abstraction agent in the
previous section would add the imagery predictions to its current state, and look up an
entry in its table using the complete state-action pair:

state=[on(A,pedestall) on(B,table) on(C,table)
no_collision_if_moved(B,pedestal2)
no_collision_if_moved(B,pedestal3)
collision_if_moved(B,pedestalsd)
collision_if_moved(B,pedestal5)
no_collision_if_moved(B,pedestal6)]
action=[move(B,pedestal2)]

A RelAl agent, on the other hand, would look up a learned value based only on the
predicted next abstract state for the action, or:

[on(A,pedestall) on(B,pedestal2) on(C,table) collision(false)]

23

As is apparent, the RelAl agent takes into account less information when looking up
(and learning) Q values: it has a more compact learning problem. If the right information
is captured by the predictions RelLAl uses (as will be discussed), the algorithm can learn
the optimal policy faster than the direct state abstraction agent. The RelAl algorithm as
instantiated in Soar/SVS is shown in Figure 9.

for each episode
for each step in the episode

perceive the concrete state s and any reward,
store s in the spatial scene

for each action a
use imagery to simulate a in the spatial scene

apply high-level perception to the imagined
scene, derive the next abstract state A(s")

lookup the learned value of ain s based on
the category of (s,a), which is A(s)

given the current action values and the
reward, apply a Q-learning update to the
category of the previous action (if any)

choose an action using epsilon-greedy policy
repeat until s is terminal

repeat for all episodes

Figure 9: The ReLAl algorithm as instantiated in Soar/SVS.

24

W RelAl
°
s -10
5 imagery-augmented
fb -30 direct state abstraction
>
<

=—direct state abstraction

-50
70 of =>&=no abstraction

e rievava S SESES SO SE (random)

1 3 5 7 9 11 13 15 17 19
Episode Bin

Figure 10: Results of learning in pedestal blocks world showing advantage of ReLAl.

Figure 10 demonstrates the performance of a RelAl agent in pedestal blocks world
compared to the agents introduced in the previous section. Experimental details are the
same as in the previous section. These data demonstrate that RelLAl can learn much
faster than using the same prediction information as part of a state representation and
using direct state abstraction. This is because RelAl is able to leverage the action
modeling knowledge implicit in its imagery operations. Since the agent knows that
prediction information is information about a particular action in the current state,
rather than just a generic property of the current state, the size of the learning problem
can be greatly reduced, resulting in faster learning.

3.2.1 Correctness in ReLAI

While the previous example provides empirical evidence that RelAl allows an agent to
learn good policies, theoretical analysis can reveal general principles about the
technique that can move the evaluation of the technique (and the architecture that
supports it) beyond what is possible with demonstrations alone.

To better understand RelAl, an analysis has been carried out to show under what
conditions Q-learning using ReLAl will be guaranteed to converge to the optimal policy
(Wintermute, 2010b). The result of this analysis is a set of three conditions that must
hold for guaranteed convergence.

First, predictions must be correct: in all cases C(s;,a) must be what A(s;,;) would
equal if action a were to be taken. This means that the agent correctly predicts all
actions it takes, and C(s;, a;) = A(s;41) at all times, but also that the agent correctly
predicts actions it does not actually take.

Second, the reward received for a transition must always be independent of (s, a),
given the next abstract state:

25

Prirges = rlsy, ap, A(Ses1)} = Pri{reys = 1|A(St41)} (1)

Finally, the next abstract state must be independent of the previous (s, a) pair, given
the current abstract state and action”:

Pr{A(s;4+1) = x|Sp—1, ar—1, A(Se), ar}=Pr{A(s;+1) = x|A(s;), a;} (2)

An important implication of these conditions is that ReLAl can use abstraction functions
where A(s;41) is not independent of s; given A(s;), but is independent of s;_;. This
stands in contrast to direct state abstraction techniques, where A(s;,;) must typically
be independent of s; given A(s;) for guaranteed convergence (e.g., Ravindran & Barto,
2002; Givan et al., 2003). The ability to use state abstractions where A(s") is not
independent of s given A(s) allows for less constraint on the high-level perception
system used to induce the abstraction function.

Even with this reduced constraint, these assumptions can be difficult to match. In the
example pedestal blocks world problem as presented above, equation 1 is met, since
the reward for a transition is completely determined by the resulting abstract state.
However, equation 2 is not met: since the problem is deterministic, all information
necessary to exactly predict future states is implicit in the initial state, but is not
captured by the abstraction. Future abstract states are then never independent of any
previous concrete state. A simple manipulation of the domain, however, reveals that
ReLAl will still work in this task, as the data indicate.

Consider an alternate version of the domain, where after each block is placed, the agent
is transported to a random instance of the task sharing the same abstract state (on and
collision predicates). That is, after each action, the spatial details of the problems
are randomly changed without changing the abstract state. In this alternate domain, the
reward for a transition is still determined by the resulting abstract state, so equation 3
still holds. In contrast to the original domain, though, the next abstract state resulting
from a transition here is independent of the previous concrete state, given the current
abstract state, so equation 4 is met.

In this alternate version of the task, the optimal policy is the same: greedily place the
blocks as far to the left as possible without collisions. In addition, viewed in terms of the
inputs to the learning algorithm (rewards and abstract states), the experience of the
agent in the actual domain is virtually identical to what it would experience in the
alternate domain®. Since the agent would learn the optimal policy in the alternate

> There is a minor aspect necessary for the proof not captured here: Equation 2 must hold under all
possible policies, not just the policy actually followed. There might be some abstraction function that,
when used with a particular policy, meets Equation 2 for the actions taken, but would not have for other
actions. That possibility will not be considered here.

® The exception is that, in the real domain, there is some correlation between potential collisions for one
block and for another, since pedestal dimensions effect both calculations. In the alternate problem, since

26

domain, the optimal policies are the same, and the agent’s experiences are consistent
with the alternate domain, the optimal policy can be learned in the actual domain.

3.2.2 ReL Al and Perceptual Abstraction
The theoretical background here can add to the understanding of the imagery benefit of
task-specific abstract property generation.

As demonstrated by both the direct state abstraction and ReLAl agents, using imagery in
pedestal blocks world can allow the task-independent high-level perceptual system in
SVS to infer task-specific properties (collisions in future states), resulting in better
performance. Generalizing this result beyond that particular task, if state abstraction is
supported by high-level perception, an agent architecture might have some fixed library
of perceptual processes, for example, SVS’s predicate extraction system. Since these
processes can be used in any task, they are task-independent. This library won’t work
well in all tasks when used with direct state abstraction, assuming the poverty
conjecture is true. However, when used with simulative imagery, that same library can
provide further useful properties. Since these properties are calculated via simulations
of the actions specific to that particular task, they can be considered task-specific
properties.

In this scheme, by encoding different properties into an abstract state, an agent induces
an abstraction function A(s). To solve a particular task, an agent’s architecture must
support creating an abstraction function for that task.

The theoretical results for RelLAl reveal that it can increase the usefulness of a given set
of abstraction functions. Compared with what is needed for direct state abstraction,
equation 4 shows that RelAl allows an agent to use abstract states that relate in a
fundamentally different way to the concrete states of the problem, with guaranteed
convergence of learning to the optimal policy. Because of this, abstraction functions
that do not meet the requirements for correct direct state abstraction in a given
problem may meet the requirements for correct ReLAl state abstraction.

For instance, Li et al. (2006) recently presented a comprehensive theory of methods for
direct state abstraction, describing five abstraction classes of increasing generality, and
grouping abstraction techniques into those classes. Of those classes, the most general
for which Q-learning convergence is guaranteed is called Q*-irrelevant. Here, the only
requirement is that all concrete states in the same abstract state have the same Q*
value for all actions, where Q™ is the value Q-learning would converge to given enough
experience in the unabstracted problem. However, RelAl allows convergence with
abstraction functions that are not Q*-irrelevant. For example, the abstraction function
used in pedestal blocks world is not Q*-irrelevant. All initial states of the problem are
grouped together in a single abstract state, regardless of whether moving A to

pedestal dimensions change after each move, this correlation is not present. As is apparent in the data,
this minor difference does not substantially affect learning.

27

pedestall will or will not cause a collision, situations that clearly effect the Q* value of
the action move (A, pedestall). This is an example of how the different relationship
between concrete and abstract state spaces with ReLAl compared to direct abstraction
allows different abstraction functions to be successfully used.

While theoretically interesting, taken at face value, the formal requirements for RelAl
do not appear to be very practical. Even for the simple pedestal blocks world task, as
examined above, the requirements are not strictly met’. However, rather than treating
these requirements as an objective to meet, they may have more practical value as an
ideal to approximate. While exactly satisfying the equations guarantees convergence to
the optimal policy, a reasonable hypothesis is that, to the degree the equations are
approximated, performance will approach the optimal ideal. Further theoretical work
may produce formal measures of approximation, but, as will be demonstrated, use of
the equations as an informal guide to constructing state representations can lead to
empirical gains. Roughly, a good state abstraction for use with RelLAl should capture as
many of the details possible which determine immediate rewards leading into a state
(for equation 3), but need not capture all information necessary to choose an action, as
long as a one-step lookahead in abstract state space provides the necessary information
(as equation 4 allows, since the consequences of actions can be dependent on details in
the concrete state but missing from the abstract state).

From these reasons, then, a given set of abstraction functions can be more useful with
ReLAl than with direct state abstraction. Abstraction functions that do not meet the
formal requirements for correct direct state abstraction in a given task may meet the
requirements for RelAl, and empirically, abstraction functions that do not work well
with direct state abstraction may work well with RelAl. The architectural structures
necessary for direct state abstraction are a subset of those necessary for RelAl, so any
agent capable of RelAl is also capable of direct abstraction. This means that RelAl
increases the breadth of tasks an agent will be able to address with a task-independent
perception system. Overall, this amounts to strong support that imagery can mitigate
the perceptual abstraction problem by allowing task-specific abstract properties to be
encoded by a fixed perception system, increasing the generality of the architecture.

There is some cost to using RelLAl compared to direct abstraction, since low-level
imagery knowledge is necessary to simulate actions, and since imagery processing takes
time. However, in many tasks, the benefit to be gained in terms of achieving better
performance with a fixed perception system clearly outweighs these costs.

3.3 ReLAl in a Complex Task

While the pedestal blocks world domain provides a simple example of the application of
RelAl, the algorithm (and the architecture supporting it) can handle much more
complex tasks. Inspired by other work using arcade games as a source of Al problems

"A simple task where the requirements for ReLAl are more straightforwardly met is presented elsewhere
(Wintermute, 2010b).

28

_..o.-' tiid1

Figure 11: Perceptual information in the game Frogger I, including object labels.

(e.g. Agre & Chapman, 1987; Diuk et al., 2008), an agent has been developed to play the
game Frogger Il for the Atari 2600 system. The original game is used (run in an
emulator) — it has not been reimplemented.

A low-level perception system has been constructed which segments, identifies, and
tracks relevant objects based on the pixels output by the emulator. The recognized
objects are input to SVS, where they are added to the spatial scene. The perception
system is not completely general-purpose: human tuning is needed to provide game-
specific parameters (including object labels), and some game-specific perceptual code is
needed to augment what is provided by the generic interface. Outside of this low-level
perceptual interface; however, the architecture is unchanged from what is presented in
2.3.

Figure 11 shows the perceptual information provided by the emulator for Frogger I1%,
overlaid with object outlines and category names provided by the low-level perception
system.

The agent has a simple goal of navigating the frog (bottom center of the figure) to the
area below the raft objects at the top of the screen, without colliding with any of the
moving obstacles or leaving the play area. This is a simplification of the complete game,
which would involve solving multiple screens, playing through multiple lives, collecting

8 © Parker Bros., 1983

29

bonuses, etc. Without considering the rest of the game, though, this task is still very
difficult. The frog has five actions: move in four directions, or do nothing. There is a slow
current in the water pulling the frog to the right, so inaction still results in motion.

The position of the frog is discrete in the vertical direction (there are 9 rows to move
through), but many horizontal positions are possible due to the current. Most of the
obstacles move continuously at uniform speed to the right or the left, although some
move vertically or diagonally. Obstacles are constantly appearing and disappearing at
the edges of the screen. This is an episodic task, and the initial state of the game differs
across episodes (the obstacles start in different positions), so memorization of an action
sequence will not work. Rather, a general policy must be learned.

A reward function similar to that of the game score has been implemented: there is a
reward of 1000 for winning (reaching the top row), and -1000 for losing (colliding with
an obstacle or leaving the area). There is a reward of 10 for moving up, and -10 for
moving down. At every time step, there is also a reward of -1 to encourage short
solutions.

A RelAl agent has been created for this task. The agent chooses an action once every 15
game frames (four per second). The experiment here examines the quality of learning
that the agent achieves (and not reaction speed), so the emulator is paused while the
agent processes the perceptions and chooses an action.

To apply RelAl in this task, imagery must be capable of simulating future states of the
game. Motion models in SVS support this capability. All of the objects in the game can
be assumed to be moving linearly at a constant velocity, and a simple motion model has
been implemented to track and project forward such movement. For the movement of
the frog itself, the agent has been provided with background knowledge in the motion
model about how the frog’s controls change its position (for example, that an “up”
action moves it 12 units in the +y direction).

The abstract perceptions used in this task encode the following information in working
memory:

- a predicate encoding the vertical position of the frog: one of the 9 rows that define the
legal play area

- a predicate encoding the horizontal position of the frog: a left, middle or right region
- a predicate encoding whether or not the frog currently intersects an obstacle

- a predicate encoding whether or not an obstacle (or screen edge) is adjacent to the
frog in each of the four directions.

As implemented, horizontal and vertical discretizations are achieved by augmenting the
perceptual information in Figure 11 with objects outlining the relevant regions, and
using predicate extraction to determine what regions the frog intersects. Collisions are

30

simply detected through predicate extraction. Directional obstacle adjacency is
determined by first using predicate extraction to determine which obstacles are located
in the appropriate direction of the frog, and then extracting the distance from the frog
to any matching obstacles. If the distance is less than a threshold (10 pixels, about the
same as the inter-row distance), the obstacle is deemed adjacent in that direction.

As a state representation, this abstraction loses potentially useful information, and is
not Markovian (since the agent could make better decisions by remembering where it
has seen obstacles in the past). However, it is compact, and just as important, it can be
composed from the simple perceptual operations available in the architecture.

To allow for a simple comparison, both a RelLAl agent and a direct state abstraction
agent have been created using the same perceptual abstraction. Following the
algorithm in Figure 9, at each step, the ReLAl agent uses imagery to project forward the
motion of the obstacles near the frog, along with the effect of each action on the frog.
The abstract state information above is then inferred for each imagined state. In
addition to abstract perceptions, in this task the ReLAl agent also encodes the proposed
action as part of the abstract state. This is because perceptions about the next state
alone cannot capture the immediate reward for the transition, as Equation 3 requires,
since moving up or down a row effects reward (not just being in a particular row).
However, the last action taken is not useful as part of the direct state abstraction
agent’s state, so it is not included there. The direct abstraction agent simply infers the
abstract state of the spatial scene (which is unmodified by imagery), and uses that as
the state signal input to the Q-learning algorithm.

For RelAl, the requirement that the abstraction captures immediate reward (Equation
1) is met, and the requirement that predictions are accurate comes close to being met,
only missing a few cases where moving objects do not follow a constant velocity or
disappear unexpectedly. The requirement on state independence (Equation 2) is not
met: A(s;4,) is not strictly independent of s;_,, given A(s;), so convergence to Q* isn’t
guaranteed. However, unlike direct state abstraction, RelAl is robust to abstractions
where A(s;,1) is dependent on s; given A(s;), which can be beneficial.

For example, the RelAl agent can base its action choice on a precise prediction of
whether or not it will collide with an obstacle in the new state A(s;,1), Where the other
agent can only base its decisions on A(s;), which includes information (obstacle
adjacency) that can only roughly predict future collision ns between moving objects. The
concrete state s; contains enough information to predict collisions in the next state
almost exactly, but this information is only useful to the ReLAl agent.

31

-200
-300
-400
-500 =o—RelAl

-600

== Dijrect State
Abstraction

-700

Avg. Reward

-800

Random Baseline
-900

-1000

-1100

1234567 8 9101112131415
Episode Bin

Figure 12: Performance of RelLAl vs. direct state abstraction in Frogger II.

Experiments were run using the actual (emulated) game. Q-learning with epsilon-greedy
exploration was used (parameters were a = 0.3, = 0.1,y = 0.9). 30 trials of 6,000
episodes each were run in each condition. Figure 12 shows the results. Here, groups of
400 adjacent episodes were binned together; the results are averaged across all
episodes in the bin and across all trials (each point represents 12,000 games).

As a baseline, the graph shows the estimated performance of a random agent. Random
performance is generalized from data collected in 1,000 task instances. Both of the
learning agents initially perform randomly, however, since they learn quickly within the
first bin of 400 episodes, the graph does not reflect this.

The graphed results do not show the ability of the agents to play the game well: epsilon-
greedy exploration means that the agent acted randomly 10% of the time (often with
fatal results), and some of the randomly-chosen start states were unwinnable. These
factors contributed to high variability in the data, necessitating the averaging of many
games per data point.

To examine the final policy, 700 games were run in each condition using the final
policies, but without exploration and with unwinnable games filtered out. Of these, the
direct abstraction agent received an average reward of -66 and won 45% of the games,
while the RelLAl agent received an average reward of 439 and won 70% of the games.

The RelAl agent clearly outperforms the direct abstraction agent: it learns a better
policy, and learns it faster. In addition, both agents perform much better than random.

This experiment demonstrates that RelLAl can be empirically useful even when
theoretical requirements are not met, and provides evidence that state representations
that meet the theoretical requirements of neither direct abstraction nor RelAl can
perform much better with RelAl. Using the same system, experiments have been

32

conducted in two further games (Space Invaders and Fast Eddie) with similar results. For
brevity, these experiments will not be reported here, but details can be found
elsewhere (Wintermute, 2010a).

The RelAl agent here further demonstrates the first two benefits listed in Section 2.2,
which relate to the perceptual abstraction problem. When the RelAl agent does a one-
step lookahead to infer that moving up will cause it to collide with a fish, it has inferred
symbolic information about the state that takes into account the precise movement of
both the frog and the fish. In that way, simulative imagery is being used to capture
movement in terms of abstract symbolic information (the first listed benefit in Section
2.2). Furthermore, the properties involved are based on simulations of the particular
task—they are task-specific properties, even though the task-independent SVS predicate
extraction system is used to infer them. This is a demonstration of the second benefit in
Section 2.2.

Section 4 - Motion Planning in Soar/SVS

As discussed in Section 1.2, motion planning for a car-like vehicle is a challenging
problem. Recall that motion planning in this case is the problem of determining a
control sequence such that a robot can drive through its environment to a goal location
(Figure 4).

The difficulty here is due to the need for precise control, where the output of the agent
must be sensitive to minute variations in its input. This aspect makes the problem
fundamentally irreducible, as it cannot be adequately solved by choosing actions based
solely on abstract states. Moreover, the most straightforward approach to handling
irreducibility, the use of encapsulated controllers, is insufficient, as nonholonomic
constraints make that form of abstraction very difficult.

In this chapter, an agent instantiated in Soar/SVS to address this task is introduced. This
agent implements an existing sampling-based motion planning algorithm, where
imagery is used to simulate the effects of a low-level controller in the current situation.
This agent provides a demonstration of the third benefit in Section 2.2, which allows
imagery to mitigate the irreducibility problem,

4.1 The RRT Algorithm

In response to the difficulty of abstraction in motion planning, a family of motion
planning algorithms has been developed based on the principle of sampling possible
trajectories through simulation. RRT (Rapidly-exploring Random Trees, LaValle & Kuffner
Jr, 2001) is a sampling-based motion planning algorithm that works by constructing a
tree of reachable states of the robot, rooted at the initial state, and adding nodes until
that tree reaches the goal. Nodes are generated by extending the tree in random
directions, in such a way that it will eventually reach the goal, given enough time. Each
path from the root of the tree to a leaf represents a path that the robot could take,
constantly obeying all constraints on its motion.

33

make tree rooted at initial configuration
while tree does not reach goal

generate random configuration -> Xr
or use goal configuration -> Xr
with some probability

get closest existing state to Xr -> Xc
extend Xc towards Xr -> Xn

if no collision occurred

add Xn to the tree, connected to Xc

Figure 13: The RRT Algorithm.

The tree is constructed by the algorithm in Figure 13, and Figure 14 shows an example
of one iteration of the algorithm applied to a car planning problem.

In the example, the car’s current configuration is node X,, while previous iterations
have uncovered other reachable configurations X; — X,. These configurations are linked
in a tree, where each configuration is reachable from its parent via a known control. In
this case, a “control” at the level of RRT is a selection of a low-level controller to use, for
example, a controller that greedily steers the car toward a particular goal. The path
followed by this controller between each connected configuration in the tree is shown
in the figure. To add to this tree, a target configuration X, is randomly generated, as
represented in the left half of the Figure. The algorithm then attempts to extend its tree
of reachable configurations to that configuration.

To extend the tree, the closest known configuration to X,, must be determined. To do
this, some metric must be used that can approximate the “distance” between
configurations—that is, the metric must approximate the distance of the shortest path
the car could follow to move from one configuration to another. In the case of car path
planning, a simple metric is the Euclidian distance between the position of the car in the
two states, with the condition that the distance is infinite if the target state is not in

Figure 14: An example of RRT applied to car motion planning.

34

front of the source. On the left of Figure 14, configuration X, is the closest to X, given
Euclidean distance alone, but since X, is not in front of X,, actually driving from X, to X,
would be difficult, since the car cannot turn in place to face X,. X, is then the closest
configuration to X, once the front constraint is taken into account, and X, in the
algorithm takes on the value of X,.

The next step in the algorithm is to extend the chosen node towards X,., while detecting
collisions along the path. This is shown on the right of Figure 14. A typical approach is to
numerically integrate differential equations that describe the vehicle dynamics to
simulate motion, resulting in a sequence of states parameterized by time. This
simulation must occur within a system capable of detecting collisions. In the right frame
of Figure 14, the controller is invoked starting at the configuration of X,, and the car’s
motion is simulated driving towards X, for some amount of time. Since no collision
occurred, the new node X,, is added to the tree of reachable configurations. The
algorithm then continues until the tree reaches the goal.

4.2 RRT in Soar/SVS

A version of the RRT algorithm has been instantiated in a Soar/SVS agent. The problem
considered is that of planning to drive a car from an initial state to a goal region, while
avoiding obstacles in a known environment (the agent only determines a plan, it is not
connected to an actual robot).

A complete car configuration in the version of the problem considered here consists of a
position where the car is located, the steering angle, the steering velocity (since the
steering angle cannot be instantaneously changed), and the angle of the car body. The
car motion model takes as input the identity of a car in the scene, and the location of a
goal. By accessing the spatial scene, the model can identify the position and body angle
of the car, and the other configuration aspects are initially assumed to be 0.

Inside the model, a system of differential equations describe the configuration of the car
as a function of the time and goal location. When integrated, these equations can yield
a sequence of configurations parameterized by time, allowing for simulation. The
equations used here were determined by combining a model of human movement and
obstacle avoidance (Fajen & Warren, 2003) with a simple car model (LaValle, 2006). No
human modeling claims are being made with this choice of controller, rather, the
particular controller was chosen as a simple demonstration of how techniques and
results based on a dynamical systems approach to cognitive science can be tightly
integrated with a symbolic Al framework. In addition, it performs well.’

The human model controls the intended steering angle of the car, and this steering
angle determines the next position of the car. A constant speed is assumed. The model
locally avoids obstacles: each obstacle affects the steering of the car, with nearer

% In other work, the local obstacle-avoiding controller here was directly compared (with favorable results)
to a similar controller that simply steers towards the goal (Wintermute, 2009b).

35

Figure 15: States of SVS Spatial Scene during RRT planning. The problem is to drive a car
from lower-left to upper-right. Left: RRT tree, just before a solution is found. Right:
Sequence of car positions that solve the problem.

obstacles located towards the front of the car having the most influence. This reactive
obstacle avoidance alone can solve simple problems, but more complicated problems
cannot be solved this way, as a solution needs to be composed out of several distinct
movement subgoals.

The controller simulates motion towards a goal, while maintaining the nonholonomic
constraints of the vehicle. Along with geometric models of the car and world in the LTM
of SVS, it is the low-level knowledge that was added to the existing SVS system to
implement this planner.

Symbolic Soar rules were written to perform the algorithm in Figure 13. As a metric for
node distance, Euclidean distance was used, with the condition that the distance is
infinite where the goal is not in front of the node. SVS predicate extraction mechanisms
were used to extract distances, and to query for an in-front relationship. The motion
model described above enables simulation, and SVS supports querying for intersections
between objects in the scene, enabling collision detection. The only new mechanism
needed in SVS to support this algorithm was a predicate projection method to generate
random goal points in the scene, which was a simple addition.

Examples of the SVS scene during RRT planning are shown in Figure 15. Soar stores, as a
symbolic structure in working memory, the RRT tree. The nodes in that tree are
perceptual pointers into SVS—they point to specific objects in the scene, which can be
seen in the figure. Soar proceeds by adding a new random point object to the scene, and
querying for the distance from each node to that object. These distances are then
compared to find the closest. A motion model-based simulation is instantiated with that
node as the initial condition (creating a new car object in the scene), and this simulation
is stepped until a certain time is reached, the goal is reached, or Soar detects a collision

36

with an obstacle™®. In all but the last case, the termination of the simulation results in a
new node being added to the tree. In addition to moving towards random points, with a
certain probability the agent instead tries to extend the tree directly towards the overall
goal, biasing the growth of the tree in that direction.

The agent has been tested on the problem in Figure 15 and other similar scenarios. For
example, in the problem in the figure, 100 trials were run, and a solution was found
after an average of 12 tree expansions. This agent serves as an existence proof that the
algorithm can be implemented in Soar/SVS, and as a demonstration of the architecture
applied to this task.

4.3 Perceptual Abstraction and Irreducibility in Motion Planning

It is interesting to note that the algorithm here was developed independent of any
broad architectural theories, but instead to address a practical need. That indicates that
the approach is fundamentally valuable, its utility is not, for example, an artifact of the
symbolic assumption in Section 1.1, nor of any shortcomings of the Soar architecture.
While the algorithm was not originally described in terms of multiple representations
and imagery, it easily maps on to those concepts. Any system implementing RRT in
problems such as this requires both the means to simulate action in terms of low-level
information, and to make abstract judgments about the outcome of that simulation,
such as “collided with an obstacle” or “reached the goal”. In addition, information about
the state of the search needs to be maintained at multiple levels of abstraction: the
agent needs to maintain the exact quantitative values for each configuration in its tree,
but also the abstract knowledge about the topology of the tree itself (which
configurations are reachable from which others).

This agent serves as a demonstration of the particular benefits outlined in Section 2.2.
Most prominently, it demonstrates the benefits related to irreducibility. If the problem
were to be addressed by a purely-symbolic system, where raw perceptions were
abstracted into states and mapped to raw actions, even for simple robots, the maximally
abstract state space would be extremely large. However, a low-level controller is used in
this approach, allowing the action space of the symbolic part of the agent to be
simplified, and working to mitigate irreducibility.

The use of low-level control alone is insufficient to mitigate irreducibility in this
situation, though. The task cannot be reduced to abstract symbolic reasoning about
controllers (the encapsulated controller approach), as may be possible in simpler
motion planning problems. For the nonholonomic motion here, there is no simple
geometrical property of the obstacles that could be calculated to determine a small set
of reachable locations and paths a controller could follow that could be searched over,

%In the implemented system, steering angle and velocity are assumed to reset to zero between nodes,
since SVS only retains shape and position information in the scene. Minor enhancements to the
architecture allowing motion model instantiations to be preserved would be needed to allow the agent to
find paths that are truly continuous in these quantities.

37

as may be possible when planning the motion of simpler robots. It is possible to build a
conservative abstract map of the world, if there are regions that are clearly traversable,
but solution quality would be lost.

Instead, simulative imagery is used in this agent to allow reasoning about the controller
in terms of symbolic information, but without requiring a complete symbolic
characterization of the controller (the third benefit in Section 2.2). This allows for a
controller that entails a complex interaction with the world—steering that continuously
varies with the exact positions of the obstacles and goal—to be reasoned about in terms
of extremely simple abstract information: whether or not the car collides with an
obstacle. The system can also be viewed in terms of the first two perceptual abstraction
related benefits. The use of simulative imagery allows motion to captured symbolically
and allows task-specific abstract properties to be captured (for example, “if the
controller is used to seek towards the goal from this state, it will succeed”).

Section 5 - Related Work

This paper touches on many areas of research in artificial intelligence, cognitive science,
and robotics. In this section a few of the most relevant connections that have not been
examined deeply elsewhere in the paper will be discussed.

5.1 Other Soar Extensions

The most relevant existing system to SVS is SVI (Lathrop, 2008; Lathrop & Laird, 2009).
SVS inherits much of its design and code from SVI, so it is difficult to say precisely
whether or not they are different systems. All of the agents developed for SVI could in
principle be adapted to SVS, but this has not been done, as the interface to symbolic
processing in Soar has changed. The motivation behind the design of SVl is to “...explore
the utility of general-purpose, intelligent systems supporting mechanisms to encode,
compose, manipulate, and retrieve symbolic and perceptual-based representations”
(Lathrop, 2008). The basic structure of the system is the same as SVS: it has short-term
and long-term memories for visual and spatial information, and means by which
symbolic processing can use them. In general, SVI was more directly inspired by
psychological theories of imagery (Kosslyn et al., 2006), while SVS emphasizes increasing
functionality, but both systems are concerned with both areas to some degree. Work in
SVI also emphasized computational efficiencies of depictive representations for visual
imagery, while work in SVS has addressed the broader interaction between abstract and
concrete (typically spatial) representations.

Architecturally, the chief differences between the systems are in the interface between
perceptual and working memory. SVI has a different approach to this interface, which is
elaborated in a technical report (Wintermute, 2009a). SVI’s equivalents to the predicate
extraction, predicate projection, and memory retrieval systems in SVS are also simpler,
and SVI has no direct equivalent to the motion processing system in SVS, either for
imagery or control.

38

Another extension to Soar for spatial processing, BiSoar, has been created by
Chandrasekaran and Kurup (Chandrasekaran, 2006; Chandrasekaran & Kurup, 2007),
augmenting Soar with the functionality of a diagrammatic reasoning system, DRS
(Chandrasekaran et al., 2004). This system is similar to Soar/SVS in many ways. BiSoar
focuses on processing with two-dimensional diagrams, which are a similar
representation to the spatial scene of SVS, consisting of labeled objects in a quantitative
representation. The integration of spatial and symbolic states is conceptually different in
BiSoar, though, as it has been proposed to include matching against spatial objects in
rules, a capability which remains unimplemented. SVS instead commits to matching of
gualitative properties of spatial objects, rather than the objects themselves. BiSoar also
has no direct equivalent to the motion processing system of SVS, and does not include
three-dimensional processing. BiSoar has been used to model simplification effects (loss
of detail) in the storage and recall of spatial memories, a capability SVS lacks (as it
currently lacks means to store new long-term perceptual memories) (Kurup &
Chandrasekaran, 2007).

ADAPT (Adaptive Dynamics and Active Perception for Thought) is a robotics architecture
based in part on Soar that includes specialized spatial processing (Benjamin et al., 2004,
2006). This processing is chiefly used in the aide of comprehending sensor input. A
world model, similar to the spatial scene in SVS, is used, where the agent builds a
representation of its current hypothesis about the contents of the world. For example, if
it has evidence from sensors that it is in front of a chair, it will imagine a chair. This
model is used to confirm or rule out hypotheses about the world, by checking if further
sensor input is consistent or inconsistent with the current imagined scene. Interestingly,
this spatial representation is not connected to sensors (as has been proposed for SVS),
but rather is connected only to Soar, which mediates all sensor data and chooses what
to imagine in the world model, reflecting the designers’ strong commitment to active
perception. The world model is also proposed to be used for “comprehension through
generation”, where potential future states of the world are simulated in order to
comprehend the current state. This is essentially simulative imagery, but it is unclear
precisely how and to what degree the capability is implemented.

5.2 Robotic Systems

Systems developed to support intelligent robotics often address many of the issues
discussed here. For example, the system developed for MIT’s entry in the DARPA Urban
Challenge (Leonard et al., 2008) was referred to earlier as an example of real world use
of the RRT motion-planning algorithm discussed in Section 4. Along with other robotics
systems using similar algorithms, this system can be considered as implementing part of
the theory, although these aspects are considered more as engineering details rather
than theoretical commitments.

Other systems are more directly posed as general-purpose theories. The Spatial
Semantic Hierarchy (Kuipers, 2000) presents a comprehensive theoretical treatment
(and implementation) of robot navigation, with a focus on mapping. In its most recent

39

incarnation (Beeson et al., 2010), the system includes four main representational levels,
containing both metrical and topological information about both small-scale space
(space within the range of the agent’s sensors) and large-scale space, all of which are
algorithmically constructed from sensor data. In this system, the connections between
low-level control and high-level representation are explored in detail. Control laws are
used which can reliably transition the robot between distinctive states, and, at higher
levels of the hierarchy, the control laws are abstracted away and the agent only
considers moving between distinctive states: this is the encapsulated controller
approach discussed in Section 1.4.

Conceptually, the metrical representations of space could be mapped onto SVS's spatial
scene, and topological spatial information could be incorporated in Soar’s symbolic
working memory. More study would be needed to determine what would be needed for
Soar/SVS to implement the details of the higher levels of SSH, though. While the SSH
does not use imagery in the sense defined here, it does share a commitment to
representation at multiple levels of abstraction and hierarchical control, corresponding
to aspects of the theory here.

Other robotic systems have previously implemented capabilities that can be considered
simulative imagery. MetaToto (Stein, 1994) was a robot designed based on the
subsumption architecture (Brooks, 1986), which used simulation in order to derive
abstract information about the structure of the world. These simulations were at a very
low level, the actual sensor readings of the robot were simulated (in contrast to SVS,
which simulates in a higher-level spatial representation). The robot represented the
world in terms of landmarks corresponding to distinctive sensor readings, and by
simulating sensor readings based on a map of the world, it could build this
representation without actually exploring. However, this system does not appear to
have been extended beyond its navigation task.

5.3 Visual Routines

The use of a concrete representation as an intermediate in visual processing has been
examined in work with visual routines. As stated by Ullman (1984), “The general
proposal is that using a fixed set of basic operations, the visual system can assemble
routines that are applied to the visual representation to extract abstract shape
properties and spatial relations”. The argument behind visual routines is very similar to
the arguments presented here regarding imagery processing as a means to perceptual
abstraction—that manipulation of a concrete representation can allow a larger class of
abstract features to be inferred.

An important difference between Ullman’s work and that presented here is that visual
routines are not regarded as imagery processes, but rather as an intermediate stage of
perception. An important implication of this difference is apparent in the pedestal
blocks world results shown in Figure 10. The graph shows a performance difference
between an agent that knows that certain abstract perceptual features are the

40

implications of particular proposed actions (the RelLAl agent), versus an agent that has
applied the same visual routines, but does not associate the results with particular
actions (the imagery-augmented direct state abstraction agent). Essentially,
manipulating the concrete representation via imagery allows the agent some built-in
knowledge about the results of that manipulation—if the agent has chosen to imagine
action A, it knows the resulting abstract information is an effect of action A, rather than
a more generic property of the current state, information which it can use to its
advantage. Furthermore, imagery operations result in a persistent concrete state which
can serve as the basis of further manipulations. This ability is used in the Frogger agent.
At each time step, the results of actions are simulated first by imagining the motion of
objects not controlled by the agent (e.g., the motion of the fish), and then sequentially
overlaying that state with the imagined consequences of each particular action (the
motion of the frog in each direction). Without a persistent imagery representation, this
decomposition would not be possible.

5.4 Reinforcement Learning

Previous work in the area of reinforcement learning has often examined the problem of
learning and control in problems with large state spaces. As was discussed previously,
spatial information is inherently continuous, often entailing very large state spaces. One
approach to this issue is to use qualitative abstractions of the low-level spatial state and
induce an abstract state space. This approach is used in Section 3 and in other work
(e.g., Stober & Kuipers, 2008).

However, other approaches to dealing with large spatial state spaces have been
investigated. Often, continuous information is not abstracted from the states of the
agent, and rather than learning unique action or state values, the agent instead tries to
learn a function over the state elements which approximates the values. In the resulting
system, an agent experiencing a completely new state can leverage knowledge learned
in other states that are nearby in terms of the components of the state.

A common approach to function approximation is to use sparse coding mechanisms,
such as CMAC (Sutton, 1996). CMAC overlays different tilings (discretizations) over
space, where any particular location will match multiple tiles. Values are learned in
terms of the tiles matched at the time of the update, so reward information learned
about a given concrete state (e.g., one represented in continuous coordinates) will
influence the values of states around it. Function approximation methods like tile coding
can be integrated with reinforcement learning in Soar (e.g., Wang & Laird, 2010), and
SVS could be used to obtain qualitative tiling information; for example, “the agent is to
the right of object X and in front of object Y” describes a location in two tilings.

Other approaches to function approximation use more complex means of learning a
value function, rather than simply combining values associated with sets of overlapping
features. For example, a neural network can be used to learn a complicated relationship
between state variables and values, as has been used in a successful agent for the game
backgammon, TD-Gammon (Tesauro, 1995).

41

There is a concern here, since a core motivation of the architectural design presented
here has to do with the perceptual abstraction problem. If function approximation
schemes successfully deal with large state spaces without the need for explicit
abstraction, it may be that good function approximation supersedes the benefits of
imagery for dealing with large state spaces.

This does not seem to be the case, however. For example, the TD-Gammon agent cited
above uses processes that can be viewed as simulative imagery in conjunction with
function approximation. In that agent, when considering each move, the agent first
determines the consequences of that move in terms of a low-level game board
representation. Then, for the resulting state, abstract features of the game board are
calculated. These features (along with the board state) are the inputs of the neural
network that approximates the value of the state. This behavior fits the description of
simulative imagery, but also incorporates function approximation. Presumably both of
these aspects are important for the performance of TD-Gammon, and it can be
concluded that in this case simulative imagery and function approximation are at least
partially complementary.

5.5 Imagery in Psychology

A long-standing debate in psychology has been over the nature of mental imagery. To
some, this is a debate over whether mental imagery is supported by propositional
(symbolic) or depictive (picture-like) representations (Kosslyn et al., 2006). Others have
posed the question as whether or not experimental data can disprove that “the process
of imagistic reasoning involves the same mechanisms and the same forms of
representation as are involved in general reasoning, though with different content or
subject matter” (Pylyshyn, 2003), with the implication that those mechanisms are likely
propositional.

This has been a difficult issue to resolve, since, in principle, both formats are able to
represent the same information, and equivalent propositional and depictive accounts
can be formulated to account for any behavioral data. However, other constraints can
be taken into account, such as brain data, theoretical parsimony, or efficiency, to aid in
identifying the underlying mechanisms (Anderson, 1978).

An abundance of brain data has been collected, largely supporting the hypothesis that
imagery is a distinct process involving depictive representations (e.g., Kosslyn et al.,
2006). Computational experiments have also examined efficiency characteristics of
reasoning with different representational formats (e.g., Funt, 1980; Glasgow &
Papadias, 1992; Huffman & Laird, 1992; Kurup & Chandrasekaran, 2006; Larkin & Simon,
1987; Lathrop, 2008; Shimojima, 1996; Tabachneck-Schijf et al., 1997). While not all of
these works directly addressed the imagery debate, all achieved results indicating that
different representational formats afford different efficiency characteristics, supporting
the hypothesis of depictive imagery.

42

The examination of the perceptual abstraction and irreducibility problems can further
inform the imagery debate. As stated above, in principle, both abstract propositional
and concrete depictive representations are able encode the same information.
However, if the poverty conjecture is true, the proposal that an agent could behave
intelligently using solely an abstract propositional representation becomes difficult to
support.

If there exists no task-independent qualitative (abstract propositional) representation of
space, an intelligent agent will need to encode different task-specific properties as new
spatial tasks are encountered. This is what makes perceptual abstraction difficult.
However, as demonstrated above, imagery within a concrete representation can
mitigate this aspect of the perceptual abstraction problem. This is then an argument
supporting the hypothesis that imagery does not use an abstract propositional format,
since the functional benefits of using imagery in this case derive from the fact that it is
not abstract.’* As stated by Forbus (1993), in reference to work in qualitative spatial
reasoning,

“If true, what does [the poverty conjecture] tell us about mental imagery? It
suggests that there exists a set of commonplace tasks, such as understanding
mechanical systems and reasoning about motion through space, that require
representations that are richer than sparse propositional descriptions, whether
performed by person or machine. Thus the question of whether or not imagery
can be accounted for by sparse propositional representations comes down to
whether or not the poverty conjecture is true.”

The irreducibility problem, along with its proposed solution in the form of low-level
controllers and simulative imagery, similarly indicates a need for imagery in a concrete
representation. In this case, in order to issue actions that are contingent on precise
details of the environment, a concrete representation which captures all of those details
is functionally useful. Strictly speaking, a concrete representation isn’t necessary for this
capability, as control processes can be reactive to details of perception without
constructing a coherent representation (Brooks, 1991). However, as has been argued
above, intelligent reasoning about control processes may not always be possible
without the ability to simulate the results of those control processes in the particular
situation within a concrete representation. Again, this indicates a functional benefit for
imagery based in a concrete (and not abstract propositional) representation.

In both of these cases, intelligent reasoning in terms of abstract propositions is made
possible only through the use of imagery in a concrete representation. The chief reason

" This argument does not directly support imagery using a depictive representation, only a concrete
representation (one that encodes many details). Depictive representations are concrete, but more
properties are needed for a representation to be depictive (see Kosslyn et al., 2006). Typically, depictive
representations in a computer are array-based (e.g., a bitmap), where concrete representations, such as
the spatial scene in SVS, may not be.

43

for the use of imagery is not that the imagery representation allows for more efficiency,
but rather that the problem cannot be represented well in terms of abstract information
alone. This is either because a task-independent architecture without imagery would
not be able to make the relevant abstract distinctions, or because the problem is
fundamentally irreducible to a form where it can be reasoned about in terms of abstract
propositional information alone.

Essentially, creating a detailed, task-independent theory capable of addressing complex
problems leads to functional arguments that provide support for the hypothesis that
imagery is not supported by an abstract propositional representation. While the analysis
here supports the use of a concrete representation in general, rather than specifically a
concrete depictive representation, given the evidence from brain imaging studies,
depictive representation is a good hypothesis for how concrete representation might be
manifested in the brain.

Section 6 - Conclusion

The overall goal of this work has been to make progress towards a task-independent
cognitive architecture to support intelligent behavior in spatial tasks. Starting from an
assumption that abstract symbolic information is used to choose actions, two meta-
problems were defined that the architecture must address: the problem of creating
appropriate abstract symbolic structures which can serve as the basis for intelligent
action choices (perceptual abstraction), and the problem of dealing with tasks where
abstract, purely-symbolic representation is impossible (irreducibility).

To mitigate these problems, a comprehensive theory was proposed, and the Soar/SVS
architecture, which follows the theory, was introduced. Several agents running in this
architecture were examined, demonstrating the benefits of the underlying theory.
These benefits, and the evidence supporting them, will be summarized here:

The theory allows movement and nonlocal interaction to be captured in terms of
abstract symbolic information, mitigating the perceptual abstraction problem.

This benefit is demonstrated in all of the agents. In the pedestal blocks world, nonlocal
interactions (block collisions in future states) are captured explicitly as predicates in the
imagery-augmented direct abstraction agent, and implicitly in the predictions of the
RelAl agent for the same task. In the Frogger agent, movement of multiple objects is
captured by the RelLAl agents, again, implicitly via the predictions of future states. In the
RRT planning agent, the movement of the car under the influence of the low-level
controller is captured symbolically, as the tree of configurations only includes those that
a reachable without collision, a property deriving from the details of that movement.

This benefit derives from the ability for the concrete representation in the architecture
to be locally manipulated by imagery. These agents provide good examples of properties
that would be very difficult to capture without this aspect. For instance, the reachability
of two configurations in the RRT planning agent is determined here through a long

44

concrete simulation process. If there was no coherent concrete representation that
could be manipulated, it is difficult to see how the agent could infer this long-term
reachability information.

The theory allows task-specific abstract properties to be encoded by a fixed, task-
independent high-level perception system, mitigating the general perceptual
abstraction problem.

This benefit is demonstrated by all of the agents, both individually and collectively. The
SVS architecture includes a fixed, task-independent high-level perception system, which
each of the agents use to capture task-specific abstract properties. In each case, using
task knowledge, the imagery system is dynamically combined with the high-level
perception system to generate properties that take into account the spatial details of
the actions available in the particular task.

In addition, the theoretical examination of RelAl provides further evidence that this
capability truly works to mitigate the general perceptual abstraction problem. A high-
level perception system that cannot induce an abstraction function to meet the formal
requirements of direct state abstraction might be able to induce such a function that
works with RelAl. For example, SVS’s predicate extraction system cannot induce an
abstraction of pedestal blocks world that allows optimal performance with direct state
abstraction, but can induce an abstraction that works with RelLAl. Imagery capability has
thus increased the coverage, in terms of number of tasks, of a high-level perception
system, achieving progress towards general perceptual abstraction.

The theory allows symbolic reasoning over continuous processes, eliminating the need
for symbolic characterization of controller performance, mitigating the irreducibility
problem.

This benefit was demonstrated by the RRT agent. As is discussed in Section 4.3, the
motion-planning task here is fundamentally irreducible. Low-level controllers simplify
the action space of the agent, and simulative imagery of control allows the agent to use
a controller that entails a complex interaction with the environment, as it locally steers
toward a goal while being biased away from obstacles. As a result, the agent is able to
act intelligently in an irreducible task.

Overall, the goal of this work has been to investigate cognitive architectural structures
to support intelligence in spatial tasks. This has led to a general-purpose architecture,
extending Soar to support processing at multiple levels of abstraction through spatial
imagery and continuous control. Theoretically, this work has addressed two
fundamental issues in creating a general-purpose cognitive architecture: the perceptual
abstraction and irreducibility problems. More practically, it has increased the breadth of
problems Soar is able to address, and the performance it is able to achieve in those
tasks.

45

References
Agre, P. E., & Chapman, D. (1987). Pengi: An implementation of a theory of activity. In

Proceedings of the Sixth National Conference on Artificial Intelligence (Vol.
278).

Anderson, J. R. (1978). Arguments concerning representations for mental imagery.
Psychological Review, 85(4), 249-277.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004).
An integrated theory of the mind. Psychological Review, 111(4), 1036-1060.

Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences,
22(04), 577-660.

Beeson, P., Modayil, J., & Kuipers, B. (2010). Factoring the mapping problem: Mobile
robot map-building in the Hybrid Spatial Semantic Hierarchy. International
Journal of Robotics Research, 29(4), 428-459.

Benjamin, D. P., Lyons, D., & Lonsdale, D. (2004). ADAPT: A Cognitive Architecture
for Robotics. In Proceedings of ICCM-2004. Presented at the International
Conference on Cognitive Modeling, Pittsburgh, PA.

Benjamin, D. P., Lyons, D., & Lonsdale, D. (2006). Embodying a cognitive model in a
mobile robot. In Proceedings of SPIE (Vol. 6384, p. 638407). Presented at the
Intelligent Robots and Computer Vision XXIV: Algorithms, Techniques, and
Active Vision, Boston, MA.

Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, 2(1), 14-23.

Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47, 139-
159.

Chandrasekaran, B. (2006). Multimodal Cognitive Architecture: Making Perception
More Central to Intelligent Behavior. Proceedings of the AAAI National
Conference on Artificial Intelligence, 1508-1512.

Chandrasekaran, B., & Kurup, U. (2007). A Bimodal Cognitive Architecture:
Explorations in Architectural Explanation of Spatial Reasoning. In Proceedings of
the AAAI Spring Symposium on Control Mechanisms for Spatial Knowledge
Processing in Cognitive / Intelligent Systems. Presented at the AAAI Spring
Symposium on Control Mechanisms for Spatial Knowledge Processing in
Cognitive / Intelligent Systems.

46

Chandrasekaran, B., Kurup, U., Banerjee, B., Josephson, J. R., & Winkler, R. (2004). An
Architecture for Problem Solving with Diagrams. In Diagrammatic Reasoning
and Inference, Lecture Notes in Artificial Intelligence (Vol. 2980, pp. 151-165).
Berlin: Springer-Verlag.

Diuk, C., Cohen, A., & Littman, M. L. (2008). An object-oriented representation for
efficient reinforcement learning. In Proceedings of the 25th International
Conference on Machine Learning (pp. 240-247). New York: ACM.

Fajen, B. R., & Warren, W. H. (2003). Behavioral dynamics of steering, obstacle
avoidance, and route selection. Journal of Experimental Psychology: Human
Perception and Performance, 29(2), 343-362.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial intelligence, 2(3-4), 189-208.

Forbus, K. D. (1993). Image and substance. Computational Intelligence, 9(4), 377-378.

Forbus, K. D., Nielsen, P., & Faltings, B. (1991). Qualitative spatial reasoning: the
CLOCK project. Artificial Intelligence, 51(1-3), 417-471.

Funt, B. V. (1980). Problem-solving with diagrammatic representations. Artificial
Intelligence, 13, 201-230.

Givan, R., Dean, T., & Greig, M. (2003). Equivalence notions and model minimization in
Markov decision processes. Artificial Intelligence, 147(1), 163-224.

Glasgow, J., & Papadias, D. (1992). Computational imagery. Cognitive Science, 16(3),
355-394.

Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and
perception. Behavioral and Brain Sciences, 27(03), 377-396.

Huffman, S., & Laird, J. E. (1992). Using Concrete, Perceptually-Based Representations
to Avoid the Frame Problem. In Proceedings of the AAAI Spring Symposium on
Reasoning with Diagrammatic Representations.

Kosslyn, S. M., Thompson, W., & Ganis, G. (2006). The Case for Mental Imagery. New
York: Oxford University Press.

Kuipers, B. (2000). The Spatial Semantic Hierarchy. Artificial Intelligence, 119(1-2),
191-233.

Kurup, U., & Chandrasekaran, B. (2006). Multi-modal Cognitive Architectures: A Partial
Solution to the Frame Problem. In Proceedings of The 28th Annual Conference of

47

the Cognitive Science Society. Presented at the The 28th Annual Conference of
the Cognitive Science Society.

Kurup, U., & Chandrasekaran, B. (2007). Modeling Memories of Large-scale Space
Using a Bimodal Cognitive Architecture. In Proceedings of the Eighth
International Conference on Cognitive Modeling (pp. 267-272).

Laird, J. E. (2008). Extending the Soar Cognitive Architecture. In Proceedings of the
First Conference on Artificial General Intelligence (pp. 224-235). Amsterdam:
IOS Press.

Laird, J. E., Yager, E. S., Hucka, M., & Tuck, C. M. (1991). Robo-Soar: An integration
of external interaction, planning, and learning using Soar. Robotics and
Autonomous Systems, 8(1-2), 113-129. doi:10.1016/0921-8890(91)90017-F

Langley, P., Laird, J. E., & Rogers, S. (2009). Cognitive architectures: Research issues
and challenges. Cognitive Systems Research, 10(2), 141-160.
doi:10.1016/j.cogsys.2006.07.004

Larkin, J. H., & Simon, H. A. (1987). Why a Diagram is (Sometimes) Worth Ten
Thousand Words. Cognitive Science, 11(1), 65-100.

Lathrop, S. D. (2008). Extending Cognitive Architectures with Spatial and Visual
Imagery Mechanisms (PhD Thesis). University of Michigan.

Lathrop, S. D., & Laird, J. E. (2009). Extending Cognitive Architectures with Mental
Imagery. In Proceedings of the Second Conference on Artificial General
Intelligence.

Lathrop, S. D., Wintermute, S., & Laird, J. E. (2010). Exploring the Functional
Advantages of Spatial and Visual Cognition From an Architectural Perspective.
Topics in Cognitive Science, no-no. doi:10.1111/j.1756-8765.2010.01130.x

Lathrop, S. D., Wintermute, S., & Laird, J. E. (2011). Exploring the functional
advantages of spatial and visual cognition from an architectural perspective.
Topics in Cognitive Science, to appear.

LaValle, S. M. (2006). Planning Algorithms. Cambridge University Press.

LaValle, S. M., & Kuffner Jr, J. J. (2001). Randomized Kinodynamic Planning. The
International Journal of Robotics Research, 20(5), 378.

Leonard, J., How, J., Teller, S., Berger, M., Campbell, S., Fiore, G., Fletcher, L., et al.
(2008). A perception-driven autonomous urban vehicle. Journal of Field
Robotics, 25(10). doi:10.1002/rob.20262

48

Li, L., Walsh, T. J., & Littman, M. L. (2006). Towards a unified theory of state
abstraction for MDPs. In Proceedings of the Ninth International Symposium on
Artificial Intelligence and Mathematics (pp. 531-539).

Lindemann, S. R., & LaValle, S. M. (2003). Current issues in sampling-based motion
planning. In Proceedings of the International Symposium of Robotics Research.
Springer.

Nason, S., & Laird, J. E. (2005). Soar-RL.: integrating reinforcement learning with Soar.
Cognitive Systems Research, 6(1), 51-59. doi:10.1016/j.cogsys.2004.09.006

Pylyshyn, Z. W. (2003). Mental imagery: In search of a theory. Behavioral and Brain
Sciences, 25(02), 157-182.

Ravindran, B., & Barto, A. G. (2002). Model minimization in hierarchical reinforcement
learning. In Proceedings of the 5th International Symposium on Abstraction,
Reformulation and Approximation (pp. 196-211).

Shimojima, A. (1996). On the efficacy of representation (PhD Thesis). Indiana
University.

Stein, L. A. (1994). Imagination and situated cognition. Journal of Experimental and
Theoretical Artificial Intelligence, 6(4), 393-407. d0i:10.1.1.18.8192

Stober, J., & Kuipers, B. (2008). From pixels to policies: A bootstrapping agent. In
Proceedings of the 7th IEEE International Conference on Development and
Learning (pp. 103-108).

Sutton, R. S. (1996). Generalization in reinforcement learning: Successful examples
using sparse coarse coding. Advances in Neural Information Processing Systems,
8, 1038-1044. doi:10.1.1.51.4764

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT
Press.

Tabachneck-Schijf, H. J. M., Leonardo, A. M., & Simon, H. A. (1997). CaMeRa: A
computational model of multiple representations. Cognitive Science, 21(3), 305-
350. d0i:10.1016/S0364-0213(99)80026-3

Tenenbaum, J. B., Griffiths, T. L., & Kemp, C. (2006). Theory-based Bayesian models of
inductive learning and reasoning. Trends in Cognitive Sciences, 10(7), 309-318.

Tesauro, G. (1995). Temporal difference learning and TD-Gammon. Communications of
the ACM, 38(3), 58-68. d0i:10.1145/203330.203343

49

Ullman, S. (1984). Visual routines. Cognition, 18(1-3), 97.

Wang, Y., & Laird, J. E. (2010). Efficient Value Function Approximation with
Unsupervised Hierarchical Categorization for a Reinforcement Learning Agent.
In Proceedings of the 2010 International Conference on Intelligent Agent
Technology. Presented at the The 2010 International Conference on Intelligent
Agent Technology.

Wintermute, S. (2009a). An Overview of Spatial Processing in Soar/SVS (Technical
Report No. CCA-TR-2009-01). University of Michigan Center for Cognitive
Architecture.

Wintermute, S. (2009b). Integrating Action and Reasoning through Simulation. In
Proceedings of the Second Conference on Artificial General Intelligence (pp.
192-197). Presented at the AGI-09, Amsterdam - Beijing - Paris: Atlantis Press.

Wintermute, S. (2010a). Abstraction, Imagery, and Control in Cognitive Architecture
(PhD Thesis). Ann Arbor: University of Michigan.

Wintermute, S. (2010b). Using Imagery to Simplify Perceptual Abstraction in
Reinforcement Learning Agents. In Proceedings of the the Twenty-Fourth AAAI
Conference on Artificial Intelligence (pp. 1567-1573). Menlo Park: AAAI Press.

Wintermute, S., & Laird, J. E. (2007). Predicate Projection in a Bimodal Spatial
Reasoning System. In Proceedings of the Twenty-Second AAAI Conference on
Artificial Intelligence (AAAI-07) (pp. 1572-1577). Presented at the AAAI-07,
Vancouver, BC: AAAI Press.

Wintermute, S., & Laird, J. E. (2008). Bimodal Spatial Reasoning with Continuous
Motion. In Proceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence (AAAI-08) (pp. 1331-1337). Presented at the AAAI-08, Chicago, IL:
AAAI Press.

50

